Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Photocatalytic Degradation of Gaseous Formaldehyde by Modified Hierarchical TiO2 Nanotubes at Room Temperature

Di Gu A , Baohui Wang A , Yanji Zhu A and Hongjun Wu A B
+ Author Affiliations
- Author Affiliations

A Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China.

B Corresponding author. Email: hjwu@nepu.edu.cn

Australian Journal of Chemistry 69(3) 343-348 https://doi.org/10.1071/CH15484
Submitted: 18 June 2015  Accepted: 12 August 2015   Published: 8 September 2015

Abstract

As a major indoor air pollutant, formaldehyde released from building and furnishing materials is one of the main volatile organic compounds (VOCs). Hierarchical TiO2 nanotube arrays (TiO2 NTs) prepared via a facile two-step anodization showed excellent photocatalytic (PC) degradation of formaldehyde at room temperature. Modification with noble metal nanoparticles (NMNs) could further improve the PC activity of TiO2 NTs. The final products of formaldehyde degradation were detected to be CO2 and H2O, which indicated that the mineralization of formaldehyde was the major process in this PC reaction. The reaction rate constants (k) determined for the three catalysts were in the order kTiO2 NTs < kAu/TiO2 NTs < kPt/TiO2 NTs (Pt/TiO2 NTs had the highest PC ability). The significant enhancement of PC performance can be ascribed to the formation of a Schottky junction between the NMNs and TiO2 NTs.


References

[1]  T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev. 2010, 110, 2536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Wksw%3D%3D&md5=778e079f190ad44e8027b2dc4522a8eaCAS | 20067232PubMed |

[2]  L. P. Yang, Z. Y. Liu, J. W. Shi, Separ. Purif. Tech. 2007, 54, 204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFSjtr8%3D&md5=23caf43a88406a86a69f860b06abd6b7CAS |

[3]  C. Shi, Y. Wang, A. Zhu, B. Chen, C. Au, Catal. Commun. 2012, 28, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWit7vF&md5=50a9946b201bc129b236e1845f0b3809CAS |

[4]  H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsuhako, Solid State Sci. 2002, 4, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvF2ks74%3D&md5=fefbf3a417cc72ebaf4f0bf4e4b4b12cCAS |

[5]  M. Yan, W. Song, Z. Chen, Carbon 2011, 49, 2869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFSgtLw%3D&md5=38c21e9d2509ddeb05200c1d0fcc2b8fCAS |

[6]  Y. Wen, X. Tang, J. Li, J. Hao, L. Wei, X. Tang, Catal. Commun. 2009, 10, 1157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Khtro%3D&md5=c705cc4a43b58b4d50493025571acf4dCAS |

[7]  X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, Appl. Catal. B 2006, 62, 265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFKitA%3D%3D&md5=9b12608cae03a8a9871e37c71ae3b8d9CAS |

[8]  S. Scirè, S. Minicò, C. Crisafulli, C. Satriano, A. Pistone, Appl. Catal. B 2003, 40, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  W. Liang, J. Li, Y. Jin, Build. Environ. 2012, 51, 345.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Z. Wang, J. Pei, J. Zhang, Build. Environ. 2013, 65, 49.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  L. Nie, J. Yu, J. Fu, ChemCatChem 2014, 6, 1983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1Cjsb8%3D&md5=9b81e6c9e8c95930d8b7d51699ff9de6CAS |

[12]  H. Wu, Z. Zhang, Int. J. Hydrogen Energy 2011, 36, 13481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajtrvN&md5=73927426f32941da96fb2ad11453bec1CAS |

[13]  H. Wu, Z. Zhang, J. Solid State Chem. 2011, 184, 3202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gtr7P&md5=24e2e31f2e6efae0383006e87da908d8CAS |

[14]  G. K. Mor, K. Shankar, M. Paulose, Nano Lett. 2005, 5, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCrtrzJ&md5=0486e0aecd82e9adb39499565ceb02edCAS | 15792438PubMed |

[15]  Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Environ. Sci. Technol. 2008, 42, 8547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ors77L&md5=dd23e648ea5c0da3b8613fc19be7e52eCAS | 19068846PubMed |

[16]  B. B. Chen, C. Shi, M. Crocker, Y. Wang, A. M. Zhu, Appl. Catal. B 2013, 132–133, 245.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. B. Huang, X. G. Ye, H. L. Huang, L. Zhang, D. Y. C. Leung, Chem. Eng. J. 2013, 230, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlClt7fL&md5=eaea2acd76bf3434cfc9a821daceddd2CAS |

[18]  J. Peng, S. Wang, Appl. Catal. B 2007, 73, 282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFegtrk%3D&md5=e16cf03c760306673ae215e5e36ad31bCAS |

[19]  B. T. Liu, C. H. Hsieh, W. H. Wang, C. C. Huang, C. J. Huang, Chem. Eng. J. 2013, 232, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWrs7fN&md5=27c4b511b5efa17fb5924d7ea949045bCAS |

[20]  C. Zhang, H. He, K. Tanaka, Appl. Catal. B 2006, 65, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlGlur4%3D&md5=8230673e018a53985ed0964119ff0fa3CAS |

[21]  N. An, Q. Yu, G. Liu, S. Li, M. Jia, W. Zhang, J. Hazard. Mater. 2011, 186, 1392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVajurg%3D&md5=2bf4fb0e9d245df6ef9bb81d9f1411d9CAS | 21211900PubMed |

[22]  X. Tang, J. Chen, Y. G. Li, Y. Li, Y. Xu, W. Shen, Chem. Eng. J. 2006, 118, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ahu74%3D&md5=a3df0332e5a703a8c41efeb68e1fd77aCAS |

[23]  L. R. Brown, R. H. Hunt, A. S. Pine, J. Mol. Spectrosc. 1979, 75, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitFalurc%3D&md5=ef2a993dff28312f05fa413716e98a67CAS |

[24]  T. Kecskés, J. Raskó, J. Kiss, Appl. Catal. A 2004, 273, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. Simanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume I 1972 (National Bureau of Standards: Washington, D.C.).

[26]  S. Sun, J. Ding, J. Bao, C. Gao, Z. Qi, C. Li, Catal. Lett. 2010, 137, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeisrs%3D&md5=a18dc43c39b4562464a4205b9ec3c353CAS |

[27]  G. Busca, J. Lamotte, J. C. Lavalley, V. Lorenzelli, J. Am. Chem. Soc. 1987, 109, 5197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlsFekuro%3D&md5=b40e7a948818a33330776f00d2017843CAS |

[28]  A. L. Goodman, L. M. Campus, K. T. Schroeder, Energy Fuels 2005, 19, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyqurvM&md5=d9c90b3b27d0aa1afcd50859ca988523CAS |

[29]  Z. Zhang, M. F. Hossain, T. Miyazaki, T. Takahashi, Environ. Sci. Technol. 2010, 44, 4741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKmtbw%3D&md5=5c3d50d45189ce3cac5808691d8df072CAS | 20476786PubMed |

[30]  D. Gu, H. Wu, Y. Zhu, B. Wang, RSC Adv. 2015, 5, 57937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtV2ks7bM&md5=5aae86c9f8aed2e0e97ad8a82a309bceCAS |

[31]  H. Wu, Y. Wang, Y. Ma, T. Xiao, D. Yuan, Z. Zhang, Ceram. Int. 2015, 41, 2527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKltLjP&md5=a93fad3d3234af02396b452ff65bf0e4CAS |

[32]  Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang, Nano Lett. 2013, 13, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOmu7nO&md5=c1b17b86b75612c8c1225ba2066efd3eCAS | 23205530PubMed |

[33]  D. Yuan, Y. Gao, H. Wu, T. Xiao, Y. Wang, B. Wang, Z. Zhang, RSC Adv. 2014, 4, 19533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnt1akt74%3D&md5=22588a8bc31af9bf30f2bfe9a83bcb94CAS |