Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Alternating Donor–Acceptor Conjugated Polymer Based on Benzodithiophene and [3,4-c]pyrrole-4,6-dione: Synthesis, Characterization, and Application in Photovoltaic Devices

Erika Bicciocchi A B , Matthias Haeussler B , Ezio Rizzardo A B , Andrew D. Scully B and Kenneth P. Ghiggino A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.

B CSIRO Manufacturing, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: ghiggino@unimelb.edu.au

Australian Journal of Chemistry 68(11) 1773-1782 https://doi.org/10.1071/CH15457
Submitted: 30 July 2015  Accepted: 21 August 2015   Published: 21 September 2015

Abstract

The synthesis is described of a new alternating donor–acceptor semiconducting polymer based on an N-octylthieno[3,4-c]pyrrole-4,6-dione building block together with a newly designed 2,3-bis(2-ethylhexyl)thiophenylethynyl substituted benzodithiophene (BDT). The introduction of electron-rich thiophene units to BDT raises the highest occupied molecular orbital (HOMO) level of the conjugated polymer and the concomitant reduction of the bandgap enhances the harvesting of solar radiation. This modification also introduces less sterically demanding triple bonds, thereby potentially enabling more favourable molecular interactions and an extra dimension of conjugation perpendicular to the main polymer chain. The optoelectronic properties of this new conjugated polymer were evaluated using UV-visible absorption and fluorescence spectroscopy, photoelectron spectroscopy in air, photo-induced charge extraction by linearly increasing voltage (Photo-CELIV), and density functional theory calculations. The polymer absorbs broadly in the wavelength range 300–700 nm in solution and the solid state. The estimated HOMO and LUMO levels of −5.4 and −3.6 eV, respectively, correspond to a bandgap of 1.8 eV. Photovoltaic devices fabricated using the polymer as the active layer displayed power conversion efficiencies (PCEs) of up to 1 %. Photo-CELIV results provide evidence that rapid recombination and poor charge mobility are likely contributing factors to the relatively low PCE values observed.


References

[1]  T. Umeyama, H. Imahori, J. Mater. Chem. A 2014, 2, 11545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFehsr%2FE&md5=f5858e30e872efa41fb5938a97d89c94CAS |

[2]  H. Youn, H. J. Park, L. J. Guo, Small 2015, 11, 2228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVKjsg%3D%3D&md5=292149fca2c93e94695881b1ed093a46CAS | 25581262PubMed |

[3]  Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ltb3M&md5=356e7a374f173dbdb22fa8e0802c0703CAS | 19785455PubMed |

[4]  Z. N. Bao, W. K. Chan, L. P. Yu, J. Am. Chem. Soc. 1995, 117, 12426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1WlsLo%3D&md5=6100f6b9b3a4b8c9aad2cf5ce58c9d2eCAS |

[5]  B. Carsten, F. He, H. J. Son, T. Xu, L. Yu, Chem. Rev. 2011, 111, 1493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWjtLs%3D&md5=0498c05a0af3d210b54f7db123a24ea0CAS | 21314190PubMed |

[6]  (a) E. Bicciocchi, M. Chen, E. Rizzardo, K. P. Ghiggino, Polym. Chem. 2013, 4, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrtL3N&md5=a5259f4e1d25942bd5e76c36507d764dCAS |
      (b) E. Bicciocchi, M. Haeussler, E. Rizzardo, A. D. Scully, K. P. Ghiggino, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 888.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. K. Stille, Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  V. Farina, V. Krishnamurthy, W. K. Scott, Organic Reactions, Vol. 50 1997 (Wiley: New York, NY).

[9]  Y. Y. Liang, L. P. Yu, Polym. Rev. 2010, 50, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2itr%2FM&md5=55256e1cc9f176f8f6971331a2dc163eCAS |

[10]  P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Acc. Chem. Res. 2010, 43, 1396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrsLvK&md5=fbfcc8dbdda238e524e1fadaf40cf7b7CAS | 20726543PubMed |

[11]  P. M. Beaujuge, J. M. J. Frechet, J. Am. Chem. Soc. 2011, 133, 20009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWnurfI&md5=e95396a5071093e6ec46f48b24b4bc3cCAS | 21999757PubMed |

[12]  J. H. Hou, M. H. Park, S. Q. Zhang, Y. Yao, L. M. Chen, J. H. Li, Y. Yang, Macromolecules 2008, 41, 6012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSktbg%3D&md5=71e1b6daa677a15fbf85acc8b7c9df55CAS |

[13]  J. Hou, H. Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgur7M&md5=959c7e1cffe78ee7c8ee8c7920416fc9CAS | 18989961PubMed |

[14]  J. Hou, H. Y. Chen, S. Zhang, G. Li, Y. Yang, J. Phys. Chem. C 2009, 113, 21202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhs7%2FM&md5=797b655392e3fc7fabff840f893a445fCAS |

[15]  J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, G. Li, J. Am. Chem. Soc. 2009, 131, 15586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ggsb%2FP&md5=3bffbca30593a84828028f8b27eae3b6CAS | 19821569PubMed |

[16]  J. Yuan, Z. Zhai, H. Dong, J. Li, Z. Jiang, Y. Li, W. Ma, Adv. Funct. Mater. 2013, 23, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKisr3M&md5=d5c7f17a8472b2ddc0867a10f0bda6ddCAS |

[17]  P. Sista, H. Nguyen, J. W. Murphy, J. Hao, D. K. Dei, K. Palaniappan, J. Servello, R. S. Kularatne, B. E. Gnade, B. Xue, P. C. Dastoor, M. C. Biewer, M. C. Stefan, Macromolecules 2010, 43, 8063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlurfK&md5=20db1fc783ade3ead54b4f072e494be8CAS |

[18]  L. J. Huo, J. H. Hou, S. Q. Zhang, H. Y. Chen, Y. Yang, Angew. Chem. Int. Ed. 2010, 49, 1500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVWjs7w%3D&md5=d5477bdfd365074f6cc99d01c29524b9CAS |

[19]  L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, J. H. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOmsLjL&md5=aa5e6e5df551ec9ba077a831e73fb8daCAS |

[20]  Y. Y. Liang, Y. Wu, D. Q. Feng, S. T. Tsai, H. J. Son, G. Li, L. P. Yu, J. Am. Chem. Soc. 2009, 131, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWnsL%2FP&md5=77e315e003be6f136ed273640b4c7093CAS |

[21]  H. Pan, Y. Wu, Y. Li, P. Liu, B. S. Ong, S. Zhu, G. Xu, Adv. Funct. Mater. 2007, 17, 3574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCnurvL&md5=543d4a3f59f98e8616a854b8b9b018dfCAS |

[22]  G. B. Zhang, Y. Y. Fu, Q. Zhang, Z. Y. Xie, Chem. Commun. 2010, 46, 4997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFensL0%3D&md5=f3741cf3fbf0e1fe7af486bb3107757fCAS |

[23]  Y. Zhang, S. K. Hau, H. L. Yip, Y. Sun, O. Acton, A. K. Y. Jen, Chem. Mater. 2010, 22, 2696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKksL4%3D&md5=b90b27bf6d1bb496dfd75efb368d46beCAS |

[24]  G. B. Zhang, Y. Y. Fu, Q. Zhang, Z. Y. Xie, Macromol. Chem. Phys. 2010, 211, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCksrfI&md5=60cb31bec272a0b5ecc821335b8243d6CAS |

[25]  Y. Liang, L. Yu, Acc. Chem. Res. 2010, 43, 1227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslemsr0%3D&md5=9703d9bf3fb09507a4b68eb9fff04930CAS | 20853907PubMed |

[26]  C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Frechet, J. Am. Chem. Soc. 2010, 132, 7595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVeguro%3D&md5=da43bff4a6698adce50d616696b32a27CAS | 20469863PubMed |

[27]  N. Hundt, K. Palaniappan, J. Servello, D. K. Dei, M. C. Stefan, M. C. Biewer, Org. Lett. 2009, 11, 4422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGktbrM&md5=01cbf5b176edec6a74c699ac016bde08CAS | 19715298PubMed |

[28]  X. C. Wang, Y. P. Sun, S. Chen, X. Guo, M. J. Zhang, X. Y. Li, Y. F. Li, H. Q. Wang, Macromolecules 2012, 45, 1208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVylur8%3D&md5=5bf536b0c1b859f8beb10c72556c83d0CAS |

[29]  Y. Li, B. Xu, H. Li, W. Cheng, L. Xue, F. Chen, H. Lu, W. Tian, J. Phys. Chem. C 2011, 115, 2386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Clsg%3D%3D&md5=ca03e555a3770989c9d8a3fd30263119CAS |

[30]  C. Cabanetos, A. El Labban, J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. J. Frechet, M. D. McGehee, P. M. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslGgsrs%3D&md5=2534081faa9b33692ec17d6f6abcb49fCAS | 23473262PubMed |

[31]  K. H. Lee, H. J. Lee, K. Kuramoto, Y. Tanaka, K. Morino, A. Sudo, T. Okauchi, A. Tsuge, T. Endo, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlKgsL4%3D&md5=d09b5b311b58f08a0ce802d496746eb9CAS |

[32]  A. Santiago, I. M. Delopezcepero, G. L. Larson, Synth. Commun. 1986, 16, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtF2ksLY%3D&md5=f2cd7a54143ea8918bc607bf06fc54b5CAS |

[33]  R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVegtLk%3D&md5=affdd9e0d5aaa574dac7c6ddcad5db95CAS |

[34]  X. G. Guo, R. P. Ortiz, Y. Zheng, Y. Hu, Y. Y. Noh, K. J. Baeg, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2011, 133, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eitQ%3D%3D&md5=22487dda5050c8c10d5a43ba358494eeCAS |

[35]  C. C. Zhao, Y. Zhang, M. K. Ng, J. Org. Chem. 2007, 72, 6364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGqtL8%3D&md5=e877fc5083af0d0c74b7d625fe446bfdCAS |

[36]  M. Wang, X. W. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, J. Am. Chem. Soc. 2011, 133, 9638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVenurg%3D&md5=f70141f2c231a04953e8d45b9a87bdbbCAS | 21630707PubMed |

[37]  A. S. Castanet, F. Colobert, P. E. Broutin, Tetrahedron Lett. 2002, 43, 5047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVensbc%3D&md5=3878238f349539bf0748468a5fc87432CAS |

[38]  T. Yamamoto, K. Toyota, N. Morita, Tetrahedron Lett. 2010, 51, 1364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSku7c%3D&md5=516ae746e51004d64a5b7c74688ea250CAS |

[39]  R. L. Wu, J. S. Schumm, D. L. Pearson, J. M. Tour, J. Org. Chem. 1996, 61, 6906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Slsr4%3D&md5=00bd7d3b78854c1f13d422aabb039fa2CAS |

[40]  Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. P. Yu, J. Am. Chem. Soc. 2009, 131, 7792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGnt7g%3D&md5=b047b9eb40574859e192e48284724860CAS |

[41]  C. B. Nielsen, T. Bjornholm, Org. Lett. 2004, 6, 3381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslyqt7w%3D&md5=441c68a4dad3aa8341ee7ba15f4fe433CAS | 15355057PubMed |

[42]  Y. Zou, A. Najari, P. Berrouard, S. Beaupre, B. R. Aich, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2010, 132, 5330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKjsLg%3D&md5=ff00dd04a153bd1b5d016857b50733a1CAS | 20349958PubMed |

[43]  T. A. T. Tan, T. M. Clarke, D. James, J. R. Durrant, J. M. White, K. P. Ghiggino, Polym. Chem. 2013, 4, 5305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOgsbfO&md5=14e5cf718b00b5d7b3ee2c17b5480ea7CAS |

[44]  M. C. Scharber, N. S. Sariciftci, Prog. Polym. Sci. 2013, 38, 1929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVWnu78%3D&md5=2d0efed00dae0977f5a177c5cc553949CAS | 24302787PubMed |

[45]  S. J. Lou, J. M. Szarko, T. Xu, L. Yu, T. J. Marks, L. X. Chen, J. Am. Chem. Soc. 2011, 133, 20661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCms73L&md5=56cdff8701053ef28ec53225bf867b97CAS | 22126463PubMed |

[46]  W. Li, Y. Zhou, B. V. Andersson, L. M. Andersson, Y. Thomann, C. Veit, K. Tvingstedt, R. Qin, Z. Bo, O. Inganaes, U. Wuerfel, F. Zhang, Org. Electron. 2011, 12, 1544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFGnt7o%3D&md5=2c5552fc78d63451a0adec3ab899a9acCAS |

[47]  J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFehs7Y%3D&md5=741dfa9434a11d24fe9983d163b21289CAS | 18288842PubMed |

[48]  A. J. Mozer, N. S. Sariciftci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, G. Juska, Appl. Phys. Lett. 2005, 86, 112104.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  A. Pivrikas, M. Ullah, T. B. Singh, C. Simbrunner, G. Matt, H. Sitter, N. S. Sariciftci, Org. Electron. 2011, 12, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wr&md5=8a66c98936f4106730a7f4ebdc347c87CAS |

[50]  Y. Zhang, K. Tajima, K. Hirota, K. Hashimoto, J. Am. Chem. Soc. 2008, 130, 7812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeksrs%3D&md5=727af6f5baf7bbe59d06063c7d1a2749CAS | 18507378PubMed |

[51]  A. J. Moulé, A. Tsami, T. W. Bünnagel, M. Forster, N. M. Kronenberg, M. Scharber, M. Koppe, M. Morana, C. J. Brabec, K. Meerholz, U. Scherf, Chem. Mater. 2008, 20, 4045.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. Huang, Y. Niu, W. Yang, Y. Mo, M. Yuan, Y. Cao, Macromolecules 2002, 35, 6080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVyns78%3D&md5=e694ca21ed9777a03e9066cbbcf2d9cbCAS |

[53]  A. Gupta, S. E. Watkins, A. D. Scully, T. B. Singh, G. J. Wilson, L. J. Rozanski, R. A. Evans, Synth. Met. 2011, 161, 856.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslWiurc%3D&md5=cc4c4527692fe825e7bd510c6b0cb790CAS |