Antimicrobial Properties of Mono- and Di-fac-rhenium Tricarbonyl 2-Pyridyl-1,2,3-triazole Complexes†
Sreedhar V. Kumar A B , Warrick K. C. Lo A , Heather J. L. Brooks B , Lyall R. Hanton A and James D. Crowley A CA Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.
B Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
C Corresponding author. Email: jcrowley@chemistry.otago.ac.nz
Australian Journal of Chemistry 69(5) 489-498 https://doi.org/10.1071/CH15433
Submitted: 18 July 2015 Accepted: 25 August 2015 Published: 9 October 2015
Abstract
A family of mono- and di-fac-rhenium tricarbonyl 2-pyridyl-1,2,3-triazole complexes with different aliphatic and aromatic substituents was synthesized in good-to-excellent yields (46–99 %). The complexes were characterized by 1H and 13C NMR spectroscopy, infrared spectroscopy, electronic (UV-visible) spectroscopy, high-resolution electrospray mass spectrometry, and elemental analyses. In four examples, the solid-state structures of the rhenium(i) complexes were confirmed by X-ray crystallography. The family of the mono- and di-rhenium(i) complexes and the corresponding 2-pyridyl-1,2,3-triazole was tested for antimicrobial activity in vitro against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Agar-based disk diffusion assays indicated that most of the rhenium(i) complexes were active against Staphylococcus aureus and that the cationic rhenium(i) complexes were more active than the related neutral systems. However, in all cases, the minimum inhibitory concentrations for all the complexes were modest (i.e. 16–1024 µg mL–1).
References
[1] S. S. Tang, A. Apisarnthanarak, L. Y. Hsu, Adv. Drug Delivery Rev. 2014, 78, 3.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSqtrzM&md5=d0b539ef787ffd9d86e9270a9a3ae6baCAS |
[2] (a) B. Spellberg, M. Blaser, R. J. Guidos, H. W. Boucher, J. S. Bradley, B. I. Eisenstein, D. Gerding, R. Lynfield, L. B. Reller, J. Rex, D. Schwartz, E. Septimus, F. C. Tenover, D. N. Gilbert, Nephrol., Dial., Transplant. 2011, 52, (Suppl 5), S397.
(b) E. K. Silbergeld, J. Graham, L. B. Price, Annu. Rev. Public Health 2008, 29, 151.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. D. Brooks, A. E. Brooks, Adv. Drug Delivery Rev. 2014, 78, 14.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. M. Conly, B. L. Johnston, Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 159.
[4] World Health Organization, Antimicrobial Resistance: Global Report on Surveillance 2014 2014 (WHO Press: Geneva).
[5] (a) F. Dwyer, I. K. Reid, A. Shulman, G. M. Laycock, S. Dixson, Aust. J. Exp. Biol. Med. Sci. 1969, 47, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtFals70%3D&md5=78eb66ff660f82e2d29f8f7f4b3392f7CAS | 4307583PubMed |
(b) F. P. Dwyer, E. C. Gyarfas, W. P. Rogers, J. H. Koch, Nature 1952, 170, 190.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) For some selected recent reviews see: (a) F. Li, J. G. Collins, F. R. Keene, Chem Soc Rev 2015, 44, 2529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFGltrY%3D&md5=fbb9b2f55a00e9896dfb79059e5d589dCAS | 25724019PubMed |
(b) A. Bolhuis, J. R. Aldrich-Wright, Bioorg Chem. 2014, 55, 51.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. L. Kilah, E. Meggers, Aust. J. Chem 2012, 65, 1325.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Patra, G. Gasser, N. Metzler-Nolte, Dalton Trans 2012, 41, 6350.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Bolhuis, A. Richards, in Metallointercalators (Ed. J. Aldrich-Wright) 2011, pp. 373–388 (Springer-Verlag Gmbh: Vienna).
[7] (a) N. S. Ng, P. Leverett, D. E. Hibbs, Q. Yang, J. C. Bulanadi, M. J. Wu, J. R. Aldrich-Wright, Dalton Trans. 2013, 42, 3196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGgsro%3D&md5=6dd5203e8a5be13f8516f4554822cf84CAS | 23233164PubMed |
(b) M. L. Beeton, J. R. Aldrich-Wright, A. Bolhuis, J. Inorg. Biochem. 2014, 140, 167.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) A. D. Richards, A. Rodger, M. J. Hannon, A. Bolhuis, Int. J. Antimicrob. Agents 2009, 33, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWqtLo%3D&md5=b1c2ec6e1a42dff49f5dad593d769a00CAS | 19157798PubMed |
(b) A. D. Faulkner, R. A. Kaner, Q. M. A. Abdallah, G. Clarkson, D. J. Fox, P. Gurnani, S. E. Howson, R. M. Phillips, D. I. Roper, D. H. Simpson, P. Scott, Nat. Chem. 2014, 6, 797.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem. 2012, 4, 31.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) P. L. Lam, G. L. Lu, K. M. Hon, K. W. Lee, C. L. Ho, X. Wang, J. C. O. Tang, K. H. Lam, R. S. M. Wong, S. H. L. Kok, Z. X. Bian, H. Li, K. K. H. Lee, R. Gambari, C. H. Chui, W. Y. Wong, Dalton Trans. 2014, 43, 3949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKrur0%3D&md5=9a037aa6653f92d2c7d8277419736655CAS | 24448670PubMed |
(b) F. Li, Y. Mulyana, M. Feterl, J. M. Warner, J. G. Collins, F. R. Keene, Dalton Trans. 2011, 40, 5032.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Bolhuis, L. Hand, J. E. Marshall, A. D. Richards, A. Rodger, J. Aldrich-Wright, Eur. J. Pharm. Sci. 2011, 42, 313.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) X. Li, A. K. Gorle, T. D. Ainsworth, K. Heimann, C. E. Woodward, J. G. Collins, F. R. Keene, Dalton Trans. 2015, 44, 3594.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOrsrjM&md5=5903e84a05f24d6a1247caa75b39f5daCAS | 25333883PubMed |
(b) F. Li, E. J. Harry, A. L. Bottomley, M. D. Edstein, G. W. Birrell, C. E. Woodward, F. R. Keene, J. G. Collins, Chem. Sci. (Camb.) 2014, 5, 685.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. K. Gorle, M. Feterl, J. M. Warner, L. Wallace, F. R. Keene, J. G. Collins, Dalton Trans. 2014, 43, 16713.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Pandrala, F. Li, L. Wallace, P. J. Steel, B. Moore, J. Autschbach, J. G. Collins, F. R. Keene, Aust. J. Chem. 2013, 66, 1065.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Pandrala, F. Li, M. Feterl, Y. Mulyana, J. M. Warner, L. Wallace, F. R. Keene, J. G. Collins, Dalton Trans. 2013, 42, 4686.
| Crossref | GoogleScholarGoogle Scholar |
(f) F. Li, M. Feterl, J. M. Warner, F. R. Keene, J. G. Collins, J. Antimicrob. Chemother. 2013, 68, 2825.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. Li, M. Feterl, Y. Mulyana, J. M. Warner, J. G. Collins, F. R. Keene, J. Antimicrob. Chemother. 2012, 67, 2686.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. J. Pisani, P. D. Fromm, Y. Mulyana, R. J. Clarke, H. Koerner, K. Heimann, J. G. Collins, F. R. Keene, ChemMedChem 2011, 6, 848.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) For reviews of the area see: (a) F. L. Thorp-Greenwood, R. G. Balasingham, M. P. Coogan, J. Organomet. Chem. 2012, 714, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjsrvM&md5=b684ec5c93173d621e2343d451d2da88CAS |
(b) G. R. Morais, A. Paulo, I. Santos, Organometallics 2012, 31, 5693.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. K.-W. Lo, K. Y. Zhang, S. P.-Y. Li, Eur. J. Inorg. Chem. 2011, 2011, 3551.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. G. Balasingham, M. P. Coogan, F. L. Thorp-Greenwood, Dalton Trans. 2011, 40, 11663.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. Leonidova, G. Gasser, ACS Chem. Biol. 2014, 9, 2180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtl2hs7vJ&md5=5276da8e113a0be144e98947a0252017CAS | 25137157PubMed |
[13] M. Wenzel, M. Patra, C. H. R. Senges, I. Ott, J. J. Stepanek, A. Pinto, P. Prochnow, C. Vuong, S. Langklotz, N. Metzler-Nolte, J. E. Bandow, ACS Chem. Biol. 2013, 8, 1442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVSqu7c%3D&md5=da34779bac50b26f5f9f19c20e9b71c2CAS | 23578171PubMed |
[14] M. Patra, M. Wenzel, P. Prochnow, V. Pierroz, G. Gasser, J. E. Bandow, N. Metzler-Nolte, Chem. Sci. (Camb.) 2015, 6, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsleltL7L&md5=bfea2ed464c6b21852ccf56c13ba7da3CAS |
[15] A. Noor, G. S. Huff, S. V. Kumar, J. E. M. Lewis, B. M. Paterson, C. Schieber, P. S. Donnelly, H. J. L. Brooks, K. C. Gordon, S. C. Moratti, J. D. Crowley, Organometallics 2014, 33, 7031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjs77J&md5=e2a78c53bb2b347b67959ba2aba36518CAS |
[16] (a) W. K. C. Lo, G. S. Huff, J. R. Cubanski, A. D. W. Kennedy, C. J. McAdam, D. A. McMorran, K. C. Gordon, J. D. Crowley, Inorg. Chem. 2015, 54, 1572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2js7c%3D&md5=7ebee30067ce83d5934a377c9c0f7113CAS |
(b) J. E. M. Lewis, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, J. D. Crowley, Chem. Sci. (Camb.) 2014, 5, 1833.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. B. Anderson, A. B. S. Elliott, J. E. M. Lewis, C. J. McAdam, K. C. Gordon, J. D. Crowley, Dalton Trans. 2012, 41, 14625.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. J. Kilpin, E. L. Gavey, C. J. McAdam, C. B. Anderson, S. J. Lind, C. C. Keep, K. C. Gordon, J. D. Crowley, Inorg. Chem. 2011, 50, 6334.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. J. Kilpin, J. D. Crowley, Polyhedron 2010, 29, 3111.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. D. Crowley, P. H. Bandeen, L. R. Hanton, Polyhedron 2010, 29, 70.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. D. Crowley, P. H. Bandeen, Dalton Trans. 2010, 39, 612.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) B. Schulze, U. S. Schubert, Chem. Soc. Rev. 2014, 43, 2522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12hsLw%3D&md5=118b3c4e431fc9471a5d0ccd5d34937eCAS | 24492745PubMed |
(b) J. D. Crowley, D. A. McMorran, Top. Heterocycl. Chem. 2012, 28, 31.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Struthers, T. L. Mindt, R. Schibli, Dalton Trans. 2010, 39, 675.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) M. Meldal, C. W. Tornoe, Chem. Rev. 2008, 108, 2952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurk%3D&md5=12ec0ea426a802149382c4bf1e9e18cbCAS | 18698735PubMed |
(b) P. Wu, V. V. Fokin, Aldrichimica Acta 2007, 40, 7.
(c) J. E. Hein, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1302.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) S. M. McNeill, D. Preston, J. E. M. Lewis, A. Robert, K. Knerr-Rupp, D. O. Graham, J. R. Wright, G. I. Giles, J. D. Crowley, Dalton Trans. 2015, 44, 11129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlalsLY%3D&md5=0b98c55f76f69866f90f004b6c7350c5CAS | 25997516PubMed |
(b) S. V. Kumar, W. K. C. Lo, H. J. L. Brooks, J. D. Crowley, Inorg. Chim. Acta 2015, 425, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. K. Vellas, J. E. M. Lewis, M. Shankar, A. Sagatova, J. D. A. Tyndall, B. C. Monk, C. M. Fitchett, L. R. Hanton, J. D. Crowley, Molecules 2013, 18, 6383.
| Crossref | GoogleScholarGoogle Scholar |
[20] T. Y. Kim, A. B. S. Elliott, K. J. Shaffer, C. J. McAdam, K. C. Gordon, J. D. Crowley, Polyhedron 2013, 52, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVWju7c%3D&md5=86a36dfa55a2b09ba6f581a5840c90c8CAS |
[21] (a) Related conditions have been exploited to generate a wide range of fac-rhenium tricarbonyl 2-pyridyl-1,2,3-triazole complexes see: (a) S. Clède, N. Delsuc, C. Laugel, F. Lambert, C. Sandt, A. Baillet-Guffroy, C. Policar, Chem Commun 2015, 51, 2687.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. François, C. Auzanneau, V. Le Morvan, C. Galaup, H. S. Godfrey, L. Marty, A. Boulay, M. Artigau, B. Mestre-Voegtle, N. Leygue, C. Picard, Y. Coulais, J. Robert, E. Benoist, Dalton Trans 2014, 43, 439.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Czaplewska, F. Theil, E. Altuntas, T. Niksch, M. Freesmeyer, B. Happ, D. Pretzel, H. Schäfer, M. Obata, S. Yano, U. S. Schubert, M. Gottschaldt, Eur. J. Inorg. Chem. 2014, 2014, 6290.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. U. Connell, D. J. Hayne, U. Ackermann, H. J. Tochon-Danguy, J. M. White, P. S. Donnelly, J. Labelled Compd. Radiopharm 2014, 57, 262.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Clède, F. Lambert, R. Saint-Fort, M.-A. Plamont, H. Bertrand, A. Vessieres, C. Policar, Chem. Eur. J. 2014, 20, 8714.
| Crossref | GoogleScholarGoogle Scholar |
(f) H. C. Bertrand, S. Clède, R. Guillot, F. Lambert, C. Policar, Inorg Chem 2014, 53, 6204.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. Wolff, L. Munoz, A. Francois, C. Carrayon, A. Seridi, N. Saffon, C. Picard, B. Machura, E. Benoist, Dalton Trans 2013, 42, 7019.
| Crossref | GoogleScholarGoogle Scholar |
(h) E. C. Mattson, M. Unger, S. Clède, F. Lambert, C. Policar, A. Imtiaz, R. D’Souza, C. J. Hirschmugl, Analyst. 2013, 138, 5610.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. Huang, G. Langille, R. K. Gill, C. M. J. Li, Y. Mikata, M. Q. Wong, D. T. Yapp, T. Storr, J. Biol. Inorg. Chem. 2013, 18, 831.
| Crossref | GoogleScholarGoogle Scholar |
(j) S. Clède, F. Lambert, C. Sandt, Z. Gueroui, M. Refregiers, M.-A. Plamont, P. Dumas, A. Vessieres, C. Policar, Chem Commun 2012, 48, 7729.
| Crossref | GoogleScholarGoogle Scholar |
(k) A. Seridi, M. Wolff, A. Boulay, N. Saffon, Y. Coulais, C. Picard, B. Machura, E. Benoist, Inorg. Chem. Commun 2011, 14, 238.
| Crossref | GoogleScholarGoogle Scholar |
(l) A. Boulay, A. Seridi, C. Zedde, S. Ladeira, C. Picard, L. Maron, E. Benoist, Eur. J. Inorg. Chem 2010, 5058.
| Crossref | GoogleScholarGoogle Scholar |
(m) M. Obata, A. Kitamura, A. Mori, C. Kameyama, J. A. Czaplewska, R. Tanaka, I. Kinoshita, T. Kusumoto, H. Hashimoto, M. Harada, Y. Mikata, T. Funabiki, S. Yano, Dalton Trans 2008, 3292.
| Crossref | GoogleScholarGoogle Scholar |
[22] Valliant and coworkers have previously shown that the very basic DMAP ligand forms more stable complexes with related [Re/Tc(CO)3] compounds when compared with other monodentate pyridyl donor ligands. Thus, we chose DMAP as our co-ligand in order to generate biologically robust complexes, see: T. S. Pitchumony, L. Banevicius, N. Janzen, J. Zubieta, J. F. Valliant, Inorg. Chem. 2013, 52, 13521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslynu7jP&md5=be20c1d376ee4dac01642410e4b33ce0CAS | 24228697PubMed |
[23] A. Hasheminasab, J. T. Engle, J. Bass, R. S. Herrick, C. J. Ziegler, Eur. J. Inorg. Chem 2014, 2014, 2643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFymtLc%3D&md5=ca4f624ade58a2e318525f94ce6e0194CAS |
[24] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=83d4ae603d8452ff9f60de795fc01f71CAS |
[25] (a) K. M. Matejka, P. J. Bremer, G. R. Tompkins, H. J. L. Brooks, Diagn. Microbiol. Infect. Dis. 2012, 74, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjtrjO&md5=723fd9eb7e3e8c9991ab61e3403b6597CAS | 23083637PubMed |
(b) M. A. Aziz, J. D. Cabral, H. J. L. Brooks, S. C. Moratti, L. R. Hanton, Antimicrob. Agents Chemother. 2012, 56, 280.
| Crossref | GoogleScholarGoogle Scholar |
[26] B. A. Lipsky, C. Hoey, Clin. Infect. Dis. 2009, 49, 1541.
| Crossref | GoogleScholarGoogle Scholar | 19842981PubMed |
[27] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFehsbw%3D&md5=f96199ba54b699fd2edf88385cf30f88CAS |
[28] (a) SADABS: Program for Absorption Correction 1996 (University of Göttingen: Göttingen, Germany)
(b) R. Blessing, Acta Crystallogr., Sect. A: Found. Crystallogr. 1995, 51, 33.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=186de5052d4b4d858e69207f48c3cd04CAS |
[30] G. Sheldrick, Acta Crystallogr. 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[31] CrysAlisPRO 2012 (Oxford/Diffraction/Agilent Technologies UK Ltd: Yarnton, England).
[32] T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=d988a16f452ce8c356becc4eed4a269bCAS | 12409628PubMed |
[33] L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=de07e79e3cae11c3ba375295472c2b7dCAS |
[34] A. L. Spek, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFejtw%3D%3D&md5=5250612cb2755431d1f82bfabfebf90eCAS |
[35] Central Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing, Twenty Second Edition, M100–22 2012 (Clinical and Laboratory Standards Institute: Wayne, PA)