Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups

Xiaobei Hou A B C , Yibing Li A and Chuan Zhao A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Shanghai University of Medicine and Health Sciences, Shanghai 200093, China.

C Shanghai Medical Instrumentation College, Shanghai 200093, China.

D Corresponding author. Email: chuan.zhao@unsw.edu.au

Australian Journal of Chemistry 69(3) 357-360 https://doi.org/10.1071/CH15431
Submitted: 17 July 2015  Accepted: 27 August 2015   Published: 22 September 2015

Abstract

Strong green-luminescent nitrogen-doped multi-layer graphene quantum dots (N-GQDs) have been prepared via a microwave-assisted hydrothermal method using glucose and urea as the starting materials. The fabricated N-GQDs show a highly crystalline structure and consist of ~3–10 graphene layers with an N/C atomic ratio 5.7 %. The wavelength-dependent luminescence emission behaviour is observed with a photoluminescence quantum yield of 5.2 %. The combination of the unique optical properties introduced by nitrogen doping with the high solubility in aqueous medium offered by the surface oxygen-rich functional groups in N-GQDs provides additional advantages for their potential applications in biolabelling and bioimaging.


References

[1]  X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 2008, 1, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSjtrvJ&md5=d67181414dfe5ab3ab5f0bace2f41128CAS | 20216934PubMed |

[2]  D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734.
         | Crossref | GoogleScholarGoogle Scholar | 20217780PubMed |

[3]  S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 2011, 47, 6858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlags70%3D&md5=d425d779364f76aace282f587699534dCAS |

[4]  L. L. Li, G. H. Wu, G. H. Yang, J. Peng, J. W. Zhao, J. J. Zhu, Nanoscale 2013, 5, 4015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOqsrg%3D&md5=5ea02d8a705f91e070dc0f1fe8137ea6CAS |

[5]  H. T. Li, Z. H. Kang, Y. Liu, S. T. Lee, J. Mater. Chem. 2012, 22, 24230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ajsrrO&md5=6e8064ad224654c87bf1cc776fe00c2eCAS |

[6]  S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed. 2010, 49, 6726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsbnI&md5=1d35ccd0b33ab89019d72c6c8e0c587aCAS |

[7]  Y. C. Lin, C. Y. Lin, P. W. Chiu, Appl. Phys. Lett. 2010, 96, 133110.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. A. Ma, H. Hu, L. Y. Zhu, J. L. Wang, J. Phys. Chem. C 2011, 115, 6195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVanu70%3D&md5=837128dcd06c058ceecb2cbc370c1fadCAS |

[9]  K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science 2009, 323, 760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersL8%3D&md5=47a226597f4c799b9830bb8eacf909d3CAS |

[10]  C. F. Hu, Y. L. Liu, Y. H. Yang, J. H. Cui, Z. R. Huang, Y. L. Wang, L. F. Yang, H. B. Wang, Y. Xiao, J. H. Rong, J. Mater. Chem. B 2013, 1, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKgurzM&md5=63c340dbe9f3f00170b2ee3aca8eb196CAS |

[11]  L. B. Tang, R. B. Ji, X. M. Li, K. S. Teng, S. P. Lau, J. Mater. Chem. C 2013, 1, 4908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKnsrbP&md5=57177876533f845633736fc4e3a801c5CAS |

[12]  Q. Q. Li, S. Zhang, L. M. Dai, L. S. Li, J. Am. Chem. Soc. 2012, 134, 18932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WqsrjP&md5=04b27b393b9224e59042a8d7ea2e2594CAS |

[13]  Y. Li, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, L. T. Qu, J. Am. Chem. Soc. 2012, 134, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKkt7%2FL&md5=f32db8d161992b1b08fe9720b2322014CAS | 22136359PubMed |

[14]  L. B. Tang, R. B. Ji, X. M. Li, G. X. Bai, C. P. Liu, J. H. Hao, J. Y. Lin, H. X. Jiang, K. S. Teng, Z. B. Yang, S. P. Lau, ACS Nano 2014, 8, 6312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlWhtb4%3D&md5=eb9eb88d537752da564463ddc7c24df5CAS |

[15]  E. A. Anumol, P. Kundu, P. A. Deshpande, G. Madras, N. Ravishankar, ACS Nano 2011, 5, 8049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCmur7F&md5=b4a475f06c59bb42f1bc4a1218ac116dCAS | 21888416PubMed |

[16]  C. L. Sun, C. T. Chang, H. H. Lee, J. G. Zhou, J. Wang, T. K. Sham, W. F. Pong, ACS Nano 2011, 5, 7788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sltb%2FO&md5=9bc30be91a41ed48fe671ac5a4147462CAS | 21910421PubMed |

[17]  S. H. Liu, F. Lu, J. J. Zhu, Chem. Commun. 2011, 47, 2661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVCmsLw%3D&md5=3e810c834a3300cbf38e84642642a50dCAS |

[18]  L. B. Tang, R. B. Ji, X. K. Cao, J. Y. Lin, H. X. Jiang, X. M. Li, K. S. Teng, C. M. Luk, S. J. Zeng, J. H. Hao, S. P. Lau, ACS Nano 2012, 6, 5102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFGjtb8%3D&md5=4e5734aedc494c7b10fcfe8dbf2bf45eCAS |

[19]  Y. Li, Y. Hu, Y. Zhao, G. Q. Shi, L. E. Deng, Y. B. Hou, L. T. Qu, Adv. Mater. 2011, 23, 776.
         | Crossref | GoogleScholarGoogle Scholar | 21287641PubMed |

[20]  D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWms7o%3D&md5=3110480b569197afeb594762507cb645CAS |

[21]  S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff’, ACS Nano 2008, 2, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivV2hu78%3D&md5=4a7ebb5e060e1e45df0d0bcb7b7b0740CAS | 19206584PubMed |

[22]  L. T. Qu, Y. Liu, J. B. Baek, L. M. Dai, ACS Nano 2010, 4, 1321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOru7s%3D&md5=edf5d73c30d7b267029ac3b6090d72e1CAS |

[23]  Y. Y. Wang, Y. Li, Y. Yan, J. Xu, B. Y. Guan, Q. Wang, J. Y. Li, J. H. Yu, Chem. Commun. 2013, 49, 9006.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVehtrvM&md5=9554f15c9eb92355a6f635a91d2dfa3aCAS |