Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structures, and Properties of Polynuclear Silver(i) Complexes Containing Tetra-Phosphine Ligand with Ag···C Interactions

Ting-Hong Huang A C , Jie Yan A , Hu Yang A , Changbin Tan B and Yan Yang A
+ Author Affiliations
- Author Affiliations

A Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Material Corrosion and Protection Key Laboratory of Sichuan province, College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China.

B Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, 643000, China.

C Corresponding author. Email: hth_chem@126.com

Australian Journal of Chemistry 69(3) 336-342 https://doi.org/10.1071/CH15413
Submitted: 24 April 2015  Accepted: 10 August 2015   Published: 4 September 2015

Abstract

Reaction of AgNO3 and N,N,N′,N′-tetrakis((diphenylphosphino)methyl)benzene-1,4-diamine (pbaa) with sodium N-ethyldithiocarbamate (Na(Etdtc)) in CH3CN/toluene and CH3CN/DMF solvents produced two Ag4S4-based coordination complexes [Ag4(pbaa)(µ-κ1S,κ2S-Etdtc)4] (1) and [Ag4(pbaa)(µ-κ1S,κ2S-Etdtc)2(µ-κ1S,κ1S-Etdtc)2] (2). Structural analysis shows that the Ag4S4 cores in 1 are interconnected by one pbaa ligand in a tetradentate mode and four Etdtc anions in a µ-κ1S,κ2S mode to form a three-layer conformation, whereas the Ag4S4 cores in 2 are linked by ligands pbaa (the tetradentate mode) and Etdtc (the µ-κ1S,κ1S and µ-κ1S,κ2S modes) to yield the other type of three-layer conformation. In addition, in different solvent systems, the Ag atoms also form different types of weak Ag···C interactions with Ag···C distances of 3.297–3.344 Å in 1 and 3.237–3.416 Å in 2. The emission spectrum of complex 1 in DMF solution displays a broad orange–red emission peak at 518 nm, which may be assigned to the ligand-to-metal charge transfer transition.


References

[1]  P. Chandrasekaran, A. F. Green, K. Lillich, S. Capone, J. T. Mague, S. DeBeer, J. P. Donahue, Inorg. Chem. 2014, 53, 9192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtleqtrnI&md5=87cae4ecdd8b919a565fb53cd6b287c7CAS | 25113575PubMed |

[2]  R. S. Chauhan, G. Kedarnath, A. Wadawale, A. M. Z. Slawin, V. K. Jain, Dalton Trans. 2013, 42, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGks7jE&md5=fa2771996f6d9ba8b53efc3ebb7a1916CAS | 23086471PubMed |

[3]  S. S. Chitnis, B. Peters, E. Conrad, N. Burford, R. McDonald, M. J. Ferguson, Chem. Commun. 2011, 47, 12331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaqsLfN&md5=924b673e1a6c5ca4e6ea2cedd577ac96CAS |

[4]  K. H. Chung, C. M. So, S. Man Wong, C. H. Luk, Z. Zhou, C. P. Lau, F. Y. Kwong, Chem. Commun. 2012, 48, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyruw%3D%3D&md5=a7bedea7c901138d8a0b4d4f63fe77abCAS |

[5]  M. R. Friedfeld, G. W. Margulieux, B. A. Schaefer, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 13178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCmsr%2FK&md5=57721a002a4c98d5a6b7869b175c1130CAS | 25166760PubMed |

[6]  H. Horváth, Á. Kathó, A. Udvardy, G. Papp, D. Szikszai, F. Joó, Organometallics 2014, 33, 6330.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  L. Bergmann, J. Friedrichs, M. Mydlak, T. Baumann, M. Nieger, S. Brase, Chem. Commun. 2013, 49, 6501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmur3F&md5=9fa6dabeb07d2f7ad85ca25981fb5e15CAS |

[8]  R. Hou, T.-H. Huang, X.-J. Wang, X.-F. Jiang, Q.-L. Ni, L.-C. Gui, Y.-J. Fan, Y.-L. Tan, Dalton Trans. 2011, 40, 7551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1GltLs%3D&md5=22ab38fe090e71b7feb27e0d497b921aCAS | 21706081PubMed |

[9]  J. Li, X.-F. Zhu, L.-Y. Zhang, Z.-N. Chen, RSC Adv. 2015, 5, 34992.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Wrs7c%3D&md5=433f6fde98ee86b23faf0c0c57a749efCAS |

[10]  N. Armaroli, G. Accorsi, M. Holler, O. Moudam, J. F. Nierengarten, Z. Zhou, R. T. Wegh, R. Welter, Adv. Mater. 2006, 18, 1313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WmsLw%3D&md5=914c63dd0a59b70974209f23e4e80b6bCAS |

[11]  G. Nakamura, M. Okamura, M. Yoshida, T. Suzuki, H. D. Takagi, M. Kondo, S. Masaoka, Inorg. Chem. 2014, 53, 7214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqsr7K&md5=0e50ce1ac20113f3cfb9a329bf5c4c44CAS | 24964206PubMed |

[12]  Q. Zhang, J. Ding, Y. Cheng, L. Wang, Z. Xie, X. Jing, F. Wang, Adv. Funct. Mater. 2007, 17, 2983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurbK&md5=de0416117a29cfc92e17351d31ce2763CAS |

[13]  S. Igawa, M. Hashimoto, I. Kawata, M. Hoshino, M. Osawa, Inorg. Chem. 2012, 51, 5805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCktLw%3D&md5=74b261c0771472874740e56b60d52028CAS | 22545828PubMed |

[14]  L.-Y. Zhang, L.-J. Xu, X. Zhang, J.-Y. Wang, J. Li, Z.-N. Chen, Inorg. Chem. 2013, 52, 5167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyksL0%3D&md5=8d2b1b417c34ec21a1c077bcd508cfdcCAS | 23581521PubMed |

[15]  L. Li, Z.-G. Ren, N.-Y. Li, Y. Zhang, J.-P. Lang, Inorg. Chim. Acta 2009, 362, 3910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Sqs70%3D&md5=6f75dce70be8c1050851cff5b84e20c7CAS |

[16]  E. C. Constable, C. E. Housecroft, P. Kopecky, E. Schonhofer, J. A. Zampese, CrystEngComm 2011, 13, 2742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVansr4%3D&md5=637160791e6247b0a8a48a4582e94ac5CAS |

[17]  F. F. B. J. Janssen, L. P. J. Veraart, J. M. M. Smits, R. de Gelder, A. E. Rowan, Cryst. Growth Des. 2011, 11, 4313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGgtL%2FK&md5=81baa9c40f7a1030cef65a39288b4eddCAS |

[18]  J. D. E. T. Wilton-Ely, D. Solanki, E. R. Knight, K. B. Holt, A. L. Thompson, G. Hogarth, Inorg. Chem. 2008, 47, 9642.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGntrjF&md5=f172527b7c7bae66f7bf881d24933fc5CAS |

[19]  S.-Y. Yu, Z.-X. Zhang, E. C.-C. Cheng, Y.-Z. Li, V. W.-W. Yam, H.-P. Huang, R. Zhang, J. Am. Chem. Soc. 2005, 127, 17994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KktrnJ&md5=2d4bb627da3a5559ad3868e38bcee8a6CAS | 16366537PubMed |

[20]  D. Zhou, X. Zhu, J. Zhu, L. Hu, Z. Cheng, J. Appl. Polym. Sci. 2007, 103, 982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWgtbrO&md5=9704571a7175122dc3e71cf457a799e0CAS |

[21]  N.-Y. Li, Z.-G. Ren, D. Liu, R.-X. Yuan, L.-P. Wei, L. Zhang, H.-X. Li, J.-P. Lang, Dalton Trans. 2010, 39, 4213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Gktbg%3D&md5=9c35d5c2b5ab52a0c6fe12423c5424b3CAS | 20390186PubMed |

[22]  O. Z. Yeşilel, G. Günay, O. Büyükgüngör, Polyhedron 2011, 30, 364.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Béziau, S. A. Baudron, M. W. Hosseini, Dalton Trans. 2012, 41, 7227.
         | Crossref | GoogleScholarGoogle Scholar | 22584488PubMed |

[24]  Y. Habata, Y. Okeda, M. Ikeda, S. Kuwahara, Org. Biomol. Chem. 2013, 11, 4265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWktLg%3D&md5=bc862d6304cbadbf823891afa68d90afCAS | 23685790PubMed |

[25]  V. T. Yilmaz, S. Hamamci, C. Kazak, J. Organomet. Chem. 2008, 693, 3885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqtL7J&md5=f4d7e65a37a3bc5905ec45da8a0ea1a6CAS |

[26]  L.-L. Zheng, J.-D. Leng, S.-L. Zheng, Y.-C. Zhaxi, W.-X. Zhang, M.-L. Tong, CrystEngComm 2008, 10, 1467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1amt7%2FM&md5=73e3209ed9cb30c8f05a6b5e8b204d28CAS |

[27]  E. Barreiro, J. S. Casas, M. D. Couce, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, A. Sanchez, J. Sordo, E. M Vazquez Lopez, Dalton Trans. 2013, 42, 5916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Ggs7o%3D&md5=65d1eec31068840aa8ce899937e23c09CAS | 23459791PubMed |

[28]  M. Pilar Carranza, B. R. Manzano, F. A. Jalon, A. M. Rodriguez, L. Santos, M. Moreno, New J. Chem. 2013, 37, 3183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCqsbnN&md5=fff0eefbc4a361820f87aaa5f3a10174CAS |

[29]  L. Valencia, R. Bastida, A. Macias, M. Vicente, P. Perez-Lourido, New J. Chem. 2005, 29, 424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1yjs7s%3D&md5=9d270646ca94d0106372ef8a954726a2CAS |

[30]  A. Castiñeiras, R. Pedrido, Inorg. Chem. 2009, 48, 4847.
         | Crossref | GoogleScholarGoogle Scholar | 19385602PubMed |

[31]  V. Rosa, C. Fliedel, A. Ghisolfi, R. Pattacini, T. Aviles, P. Braunstein, Dalton Trans. 2013, 42, 12109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WltLbJ&md5=1e08bf549586e2bc68522f2f2c104d87CAS | 23615622PubMed |

[32]  J. Vicente, P. González-Herrero, Y. García-Sánchez, D. Bautista, Inorg. Chem. 2008, 47, 10662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CgtrjP&md5=495ff3c679640f2f5a10ee76448eb3f4CAS | 18855385PubMed |

[33]  A. T. Çolak, G. Pamuk, O. Z. Yeşilel, F. Yılmaz, Inorg. Chem. Commun. 2011, 14, 1591.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  B. L. Schottel, H. T. Chifotides, M. Shatruk, A. Chouai, L. M. Pérez, J. Bacsa, K. R. Dunbar, J. Am. Chem. Soc. 2006, 128, 5895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtleqsLY%3D&md5=ce475291b18705a761e4c1992e5b7b04CAS | 16637658PubMed |

[35]  X.-P. Zhou, X. Zhang, S.-H. Lin, D. Li, Cryst. Growth Des. 2007, 7, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVequr4%3D&md5=dbd3f2ddbc93a9b001d41510996db5acCAS |

[36]  A. Castiñeiras, R. Pedrido, Inorg. Chem. 2008, 47, 5534.
         | Crossref | GoogleScholarGoogle Scholar | 18533649PubMed |

[37]  Y. Ling, F.-P. Zhai, M.-L. Deng, D. Wu, Z.-X. Chen, X.-F. Liu, Y.-M. Zhou, L.-H. Weng, CrystEngComm 2012, 14, 1425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wmu7c%3D&md5=7b2f30b93ee62ac10f32ace68050a4e7CAS |

[38]  D. Sun, Y.-H. Li, H.-J. Hao, F.-J. Liu, Y. Zhao, R.-B. Huang, L.-S. Zheng, CrystEngComm 2011, 13, 6431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2gurjI&md5=4a158997faa95eb9de31ce8338449dc8CAS |

[39]  J. Vicente, P. González-Herrero, Y. García-Sánchez, P. G. Jones, Inorg. Chem. 2009, 48, 2060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOks7k%3D&md5=e54c1a716a4707b19d12a22245d6b757CAS | 19235967PubMed |

[40]  H. Wu, X.-W. Dong, J.-F. Ma, H.-Y. Liu, J. Yang, H.-Y. Bai, Dalton Trans. 2009, 3162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFals7o%3D&md5=86ba779348415b263d5d3a9c7301891eCAS | 19421618PubMed |