Engineering Disorder at a Nanoscale: A Combined TEM and XAS Investigation of Amorphous versus Nanocrystalline Sodium Birnessite
Rosalie K. Hocking A E , Hannah J. King A , Aimee Hesson A , Shannon A. Bonke B , Bernt Johannessen C , Monika Fekete B , Leone Spiccia B and Shery L. Y. Chang DA Matter and Materials Group (Chemical Sciences), College of Science, Technology and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B School of Chemistry and Australian Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic. 3800, Australia.
C Australian Synchrotron, 800 Blackburn Road, Clayton, Vic. 3168, Australia.
D LeRoy Eryring Centre for Solid State Science, Arizona State University, Palm Walk, Tempe, AZ 85287, USA.
E Corresponding author. Email: rosalie.hocking@jcu.edu.au
Australian Journal of Chemistry 68(11) 1715-1722 https://doi.org/10.1071/CH15412
Submitted: 8 July 2015 Accepted: 13 August 2015 Published: 7 September 2015
Abstract
The term amorphous metal oxide is becoming widely used in the catalysis community. The term is generally used when there are no apparent peaks in an X-ray diffraction pattern. However, the absence of such features in X-ray diffraction can mean that the material is either truly amorphous or that it is better described as nanocrystalline. By coprecipitating a sodium birnessite-like phase with and without phosphate (1.5 %), we are able to engineer two very similar but distinct materials – one that is nanocrystalline and the other that is amorphous. The two closely related phases were characterized with both Mn K-edge X-ray absorption spectroscopy and high-resolution transmission electron microscopy. These structural results were then correlated with catalytic and electrocatalytic activities for water oxidation catalysis. In this case, the amorphous phosphate-doped material was less catalytically active than the nanocrystalline material.
References
[1] (a) K. Sauer, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2002, 99, 8631.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltF2hsL4%3D&md5=63da0c479cc68945598f4ad11034d3a9CAS | 12077302PubMed |
(b) M. J. Russell, A. J. Hall, J. Geol. Soc. London 1997, 154, 377.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. Wiechen, I. Zaharieva, H. Dau, H. P. Kurz, Chem. Sci. 2012, 3, 2330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGrsrs%3D&md5=84e1f8a76b0649e31b7aaa3b4a8ebed1CAS |
(b) M. M. Najafpour, T. Ehrenberg, M. Wiechen, P. Kurz, Angew. Chem. Int. Ed. 2010, 49, 2233.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Wiechen, H.-M. Berends, P. Kurtz, Dalton Trans. 2012, 21.
(d) D. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2013, 135, 3494.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 8525.
| Crossref | GoogleScholarGoogle Scholar |
(f) I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Energy Environ. Sci. 2012, 5, 7081.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Dau, C. Limburg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem. 2010, 2, 724.
| Crossref | GoogleScholarGoogle Scholar |
(h) R. K. Hocking, R. Malaeb, W. P. Gates, A. F. Patti, S. L. Y. Chang, G. Devlin, D. R. MacFarlane, L. Spiccia, ChemCatChem 2014, 6, 2028.
| Crossref | GoogleScholarGoogle Scholar |
(i) R. K. Hocking, R. Brimblecombe, S. L. Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
(j) T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 1519.
| Crossref | GoogleScholarGoogle Scholar |
(k) B. A. Pinaud, Z. Chen, D. N. Abram, T. F. Jaramillo, J. Phys. Chem. C 2011, 115, 11830.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Fekete, R. K. Hocking, S. L. Y. Chang, C. Italiano, A. F. Patti, F. Arena, L. Spiccia, Energy Environ. Sci. 2013, 6, 2222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWmtLzF&md5=c0a73eaddb0640cf6647d74c7c20def3CAS |
[4] H. Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Norskov, T. F. Jaramillo, J. Rossmeisl, Phys. Chem. Chem. Phys. 2012, 14, 14010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2ru7fP&md5=523a17f7121d5725dac9583fa8c4a85cCAS | 22990481PubMed |
[5] (a) F. Zhou, A. Izgorodin, R. K. Hocking, V. Armel, L. Spiccia, D. R. MacFarlane, ChemSusChem 2013, 6, 643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFOnsbw%3D&md5=f880bc5f177c5fa3cbb8ee7549636980CAS | 23460606PubMed |
(b) F. Zhou, A. Izgorodin, R. K. Hocking, L. Spiccia, D. R. MacFarlane, Adv. Energy Mater. 2012, 2, 1013.
| Crossref | GoogleScholarGoogle Scholar |
[6] T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 18153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCrtbbE&md5=cd47760151f0c634bb60bfadb43aa6d9CAS | 23088413PubMed |
[7] (a) F. Jiao, H. Frei, Energy Environ. Sci. 2010, 3, 1018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yrsbrK&md5=1cb101b4d00a1b3c75e6ccdd1ff717adCAS |
(b) F. Jiao, H. Frei, Chem. Commun. 2010, 2920.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. D. Tilley, M. Cornuz, K. Sivula, M. Gratzel, Angew. Chem. Int. Ed. 2010, 49, 6405.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. E. Osterloh, Chem. Soc. Rev. 2013, 42, 2294.
[8] B. Johannessen, P. Kluth, C. J. Glover, G. de M. Azevedo, D. J. Llewellyn, G. J. Foran, M. Ridgeway, J. Appl. Phys. 2005, 98, 024307.
[9] A. Iyer, J. Del-Pilar, C. K. King’ondu, E. Kissel, H. F. Garces, H. Huang, A. M. El-Sawy, P. K. Dutta, S. L. Suib, J. Phys. Chem. C 2012, 116, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFSit70%3D&md5=b67b7894174cc378f70925053bae4501CAS |
[10] M. C. Ridgway, G. de M. Azevedo, R. G. Elliman, C. J. Glover, D. J. Llewellyn, R. Miller, W. Wesch, G. J. Foran, J. Hansen, A. Nylandsted-Larsen, Phys. Rev. B 2005, 71, 094107.
[11] (a) A. Singh, R. K. Hocking, S. L. Y. Chang, B. M. George, M. Fehr, K. Lips, A. Schnegg, L. Spiccia, Chem. Mater. 2013, 25, 1098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVKlurY%3D&md5=d886b41e0db39dc3f9dc314d0385b878CAS |
(b) R. D. L. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, C. P. Berlinguette, J. Am. Chem. Soc. 2013, 135, 11580.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Holzinger, G. Kickelbich, Chem. Mater. 2003, 15, 4944.
| Crossref | GoogleScholarGoogle Scholar |
[12] W. S. Rasband, ImageJ 1997–2014 (US National Institutes of Health: Bethesda, MD).
[13] EPA Acid Digestion of Sediments, Sludges and Soils. Available at http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf (accessed 25 May 2015).
[14] R. A. Scott, J. E. Hahn, S. Doniach, H. C. Freeman, K. O. Hodgson, J. Am. Chem. Soc. 1982, 104, 5364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltlKjtr0%3D&md5=80988ae4933fea16c6c33d039ae4788bCAS |
[15] A. Tenderholt, B. Hedman, K. O. Hodgson, in XAFS13 (Eds B. Hedman, P. Pianetta) 2007, pp. 105–107 (AIP: Stanford, CA).
[16] Microsoft Excel 2007 (Microsoft: Redmond, WA).
[17] (a) B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlCntLo%3D&md5=7d7acc7eab4f46733694ad137fbf903eCAS | 15968136PubMed |
(b) B. Ravel, Artemis 2006 (University of Chicago: Chicago, IL). Available at http://cars9.uchicago.edu/~ravel/software/doc/Artemis/artemis.html (accessed 20 August 2015)
[18] A. Izgorodin, R. K. Hocking, O. Winther-Jenson, M. Hilder, B. Winther-Jenson, D. R. MacFarlane, Catal. Today 2013, 200, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqt7jI&md5=ab9a81ae37cec2ba172e711ba370026aCAS |
[19] J.-M. Oh, S.-H. Hwang, J.-H. Choy, Solid State Ion. 2002, 151, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCqtbg%3D&md5=8bccfc4ea05b335e49badb3472c0c3fbCAS |
[20] J. Luo, Q. Zhang, A. Huang, O. Giraldo, S. L. Suib, Inorg. Chem. 1999, 38, 6106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Sis7c%3D&md5=fa255f91c3848b76417483defde820d7CAS | 11671320PubMed |
[21] (a) I. Saratovsky, P. G. Wightman, P. A. Pasten, J.-F. Gaillard, K. R. Poeppelmeier, J. Am. Chem. Soc. 2006, 128, 11188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVaks7w%3D&md5=0926c7dfb0a7c14debd28789e30fd0e0CAS | 16925437PubMed |
(b) A.-C. Gaillot, D. Flot, V. A. Drits, A. Mancauau, M. Burghammer, B. Lanson, Chem. Mater. 2003, 15, 4666.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Luo, A. Huang, S. H. Park, S. L. Suib, C.-L. O’Young, Chem. Mater. 1998, 10, 1561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFChtr0%3D&md5=15c43a697e1ace1c509ea981301c1d22CAS |
[23] S. L. Y. Chang, A. Singh, R. K. Hocking, C. Dwyer, L. Spiccia, J. Mater. Chem. A 2014, 2, 3730.
| 1:CAS:528:DC%2BC2cXislGktb8%3D&md5=3c1871dc550dc782cf25b61ff73f605eCAS |
[24] E. Silvester, A. Manceau, V. A. Drits, Am. Mineral. 1997, 82, 962.
| 1:CAS:528:DyaK2sXmtVCjtbY%3D&md5=3a5d20cdab7b13d5a8304b8329db9781CAS |
[25] A. C. Gaillot, V. A. Drits, A. Manceau, B. Lanson, Microporous Mesoporous Mater. 2007, 98, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlags77J&md5=c764f7aecbbf11a2fd18096c3f867401CAS |
[26] T. Ressler, S. L. Brock, J. Wong, S. L. Suib, J. Phys. Chem. B 1999, 103, 6407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVCrt7g%3D&md5=293295c8c7ce0c8d0a649ea45727a246CAS |
[27] R. K. Hocking, S. L. Y. Chang, D. R. MacFarlane, L. Spiccia, Aust. J. Chem. 2012, 65, 608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFCnsLs%3D&md5=9cd763566d12c63f6e66709c36758b63CAS |
[28] A. R. Parent, R. H. Crabtree, G. W. Brudvig, Chem. Soc. Rev. 2013, 42, 2247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFKru7Y%3D&md5=92e779bf9c7d4e492c4c39ec810afb77CAS | 22975690PubMed |
[29] S. Y. Lee, D. Gonzalez-Flores, J. Ohms, T. Trost, H. Dau, I. Zaharieva, P. Kurz, ChemSusChem 2014, 7, 3442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVCiu7jE&md5=65bbaa028fb7d64a81588dbfea2d9f0bCAS | 25346273PubMed |
[30] (a) M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=7b10ff67228d9508d7e74e000f89a17eCAS | 18669820PubMed |
(b) M. W. Kanan, J. Yano, Y. Surendranath, M. Dinca, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2010, 132, 13692.
| Crossref | GoogleScholarGoogle Scholar |