Visible Light-Promoted Metal-Free Reduction of Organohalides by 2-Naphthyl or 2-Hydroxynaphthyl-Substituted 1,3-Dimethylbenzimidazolines
Eietsu Hasegawa A B , Kazuma Mori A , Shiori Tsuji A , Kazuki Nemoto A , Taku Ohta A and Hajime Iwamoto AA Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan.
B Corresponding author. Email: ehase@chem.sc.niigata-u.ac.jp
Australian Journal of Chemistry 68(11) 1648-1652 https://doi.org/10.1071/CH15396
Submitted: 1 July 2015 Accepted: 30 July 2015 Published: 31 August 2015
Abstract
The visible light-promoted reduction reactions of some organohalides were investigated using 2-aryl-1,3-dimethylbenzimidazolines (Ar-DMBIH) possessing 2-naphthyl or 2-hydroxynaphthyl substituents. In these reduction reactions, single-electron transfer from photo-excited Ar-DMBIH, attained by Xe lamp irradiation through an appropriate glass-filter (λ > 390 nm), to the halide substrates leads to the carbon–halogen bond cleavage, followed by the rearrangements of the formed carbon radicals such as 5-exo hexenyl cyclization and the Dowd–Beckwith ring expansion. Addition of 1,8-diazabicyclo[5.4.0]undec-7-ene was found to enhance the reducing ability of hydroxynaphthyl-substituted DMBIH. A household white light-emitting diode was also used as a light source for these reactions.
References
[1] G. Ciamician, Science 1912, 36, 385.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC38Xitl2htA%3D%3D&md5=4698328bc16bafe88f33b4dda8e40d0aCAS | 17836492PubMed |
[2] (a) Pioneering works. (a) D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyhurfJ&md5=bbbe39c5e23c851061fb149317f9a462CAS | 18772399PubMed |
(b) M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc. 2009, 131, 8756.
| Crossref | GoogleScholarGoogle Scholar |
(d) Representative reviews. (d) K. Zeitler, Angew. Chem., Int. Ed. 2009, 48, 9785.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Xuan, W. J. Xiao, Angew. Chem., Int. Ed. 2012, 51, 6828.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
| Crossref | GoogleScholarGoogle Scholar |
(j) T. Koike, M. Akita, Synlett. 2013, 24, 2492.
| Crossref | GoogleScholarGoogle Scholar |
(k) D. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. Ravelli, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2013, 42, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrurnE&md5=c9dbf247195339696fc7b14778e61284CAS | 22990664PubMed |
(b) D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47, 1455.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. P. Hari, B. König, Chem. Commun. 2014, 50, 6688.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014, 12, 6059.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009, 131, 10875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCntbg%3D&md5=888cd3785039b1467ae970b5e6504ab1CAS | 19722670PubMed |
(b) J. W. Tucker, J. M. R. Narayanam, S. W. Krabbe, C. R. J. Stephenson, Org. Lett. 2010, 12, 368.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Furst, B. S. Matsuura, J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, Org. Lett. 2010, 12, 3104.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. S. Andrews, J. J. Becker, M. R. Gagne, Angew. Chem., Int. Ed. 2010, 49, 7274.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. W. Shih, M. N. Vander Wal, R. L. Grange, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 13600.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. W. Tucker, C. R. J. Stephenson, Org. Lett. 2011, 13, 5468.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. H. Dai, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem. 2011, 3, 140.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Neumann, S. Füldner, B. König, K. Zeitler, Angew. Chem., Int. Ed. 2011, 50, 951.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem. 2012, 4, 854.
| Crossref | GoogleScholarGoogle Scholar |
(j) C. J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, J. Am. Chem. Soc. 2012, 134, 8875.
| Crossref | GoogleScholarGoogle Scholar |
(k) H. Kim, C. Lee, Angew. Chem., Int. Ed. 2012, 51, 12303.
| Crossref | GoogleScholarGoogle Scholar |
(l) M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. – Eur. J. 2012, 18, 7336.
| Crossref | GoogleScholarGoogle Scholar |
(m) Y. Cheng, X. Gu, P. Li, Org. Lett. 2013, 15, 2664.
| Crossref | GoogleScholarGoogle Scholar |
(n) G. Revol, T. McCallum, M. Morin, F. Gagosz, L. Barriault, Angew. Chem., Int. Ed. 2013, 52, 13342.
| Crossref | GoogleScholarGoogle Scholar |
(o) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725.
| Crossref | GoogleScholarGoogle Scholar |
(p) E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M. Hudson, Y. Luo, C. J. Hawker, J. R. de Alaniz, Chem. Commun. 2015, 51, 11705.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) Visible-light promoted vitamin B12 (Co complex)-catalyzed protocol has also been reported. (a) H. Shimakoshi, M. Abiru, S. Izumi, Y. Hisaeda, Chem. Commun. 2009, 6427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yisrfI&md5=246cc35ff842015cbeab76f634bfd7ebCAS |
(b) K. Tahara, Y. Hisaeda, Green Chem. 2011, 13, 558.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) E. Hasegawa, Y. Tamura, E. Tosaka, Chem. Commun. 1997, 1895.
| Crossref | GoogleScholarGoogle Scholar |
(b) E. Hasegawa, A. Yoneoka, K. Suzuki, T. Kato, T. Kitazume, K. Yanagi, Tetrahedron 1999, 55, 12957.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Hasegawa, S. Takizawa, K. Iwaya, M. Kurokawa, N. Chiba, K. Yamamichi, Chem. Commun. 2002, 1966.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Hasegawa, S. Takizawa, T. Seida, A. Yamaguchi, N. Yamaguchi, N. Chiba, T. Takahashi, H. Ikeda, K. Akiyama, Tetrahedron 2006, 62, 6581.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Hasegawa, H. Hirose, K. Sasaki, S. Takizawa, T. Seida, N. Chiba, Heterocycles 2009, 77, 1147.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Hasegawa, E. Tosaka, A. Yoneoka, Y. Tamura, S. Takizawa, M. Tomura, Y. Yamashita, Res. Chem. Intermed. 2013, 39, 247.
| Crossref | GoogleScholarGoogle Scholar |
(g) E. Hasegawa, M. Tateyama, T. Hoshi, T. Ohta, E. Tayama, H. Iwamoto, S. Takizawa, S. Murata, Tetrahedron 2014, 70, 2776.
| Crossref | GoogleScholarGoogle Scholar |
(h) E. Hasegawa, T. Ohta, S. Tsuji, K. Mori, K. Uchida, T. Miura, T. Ikoma, E. Tayama, H. Iwamoto, S. Takizawa, S. Murata, Tetrahedron 2015, 71, 5494.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Original work of aryl radical cyclization. (a) A. L. J. Beckwith, W. B. Gara, J. Chem. Soc., Perkin Trans. 2 1975, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXkt1Ohtr0%3D&md5=86c3f35883a6bbbfaf80217c63b331f6CAS |
(b) A. L. J. Beckwith, W. B. Gara, J. Chem. Soc., Perkin Trans. 2 1975, 795.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, Tetrahedron 1981, 37, 3073.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. L. J. Beckwith, J. Chem. Soc. Chem. Commun. 1986, 464.
[8] (a) Representative aryl radical cyclization of allyloxy halobenzenes promoted by UV light with strong bases. (a) G. Boisvert, R. Giasson, Tetrahedron Lett. 1992, 33, 6587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjvVOjtQ%3D%3D&md5=27c3802b4172eec4be8de5667f90896eCAS |
(b) S. E. Vaillard, A. Postigo, R. A. Rossi, J. Org. Chem. 2004, 69, 2037.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Yoshimi, H. Kanai, K. Nishikawa, Y. Ohta, Y. Okita, K. Maeda, T. Morita, Tetrahedron Lett. 2013, 54, 2419.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) J. Chen, D. D. Tanner, J. Org. Chem. 1988, 53, 3897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFagtbo%3D&md5=6d5857af717790bf7a39fd1ad1e9da78CAS |
(b) D. D. Tanner, J. J. Chen, J. Org. Chem. 1989, 54, 3842.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. D. Tanner, J. J. Chen, L. Chen, C. Luelo, J. Am. Chem. Soc. 1991, 113, 8074.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. D. Tanner, J. J. Chen, C. Luelo, P. M. Peters, J. Am. Chem. Soc. 1992, 114, 713.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. D. Tanner, J. J. Chen, J. Org. Chem. 1992, 57, 662.
| Crossref | GoogleScholarGoogle Scholar |
[10] The proper use of two types of DMBIH based on the reaction pattern of substrates. See: E. Hasegawa, S. Takizawa, Aust. J. Chem. 2015, and references cited.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. H. Howard, W. M. Meylan, Handbook of Physical Properties of Organic Chemicals 1997 (CRC Lewis Publishers: Boca Raton, New York, London, Tokyo).
[12] K. Kaupmees, A. Trummal, I. Leito, Croat. Chem. Acta 2014, 87, 385.
| Crossref | GoogleScholarGoogle Scholar |
[13] PET reaction of naphthoxide with organohalides. J. E. Argüello, A. B. Peñéñory, J. Org. Chem. 2003, 68, 2362.
| Crossref | GoogleScholarGoogle Scholar | 12636403PubMed |
[14] X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H. Wang, J. P. Cheng, J. Am. Chem. Soc. 2008, 130, 2501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFehs7w%3D&md5=63d7cd414da7cf55699d7c5619b53ed9CAS | 18254624PubMed |
[15] P. Hapiot, J. Pinson, N. Yousfi, New J. Chem. 1992, 16, 877.
| 1:CAS:528:DyaK3sXhs1ymtro%3D&md5=7d0576be8511c280e6d04fd2efe59074CAS |
[16] (a) Representative publications of hexenyl radical cyclization. (a) D. Griller, K. U. Ingold, Acc. Chem. Res. 1980, 13, 317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltlWmtbw%3D&md5=7d7d1cb174ae911931929b26c5c6037aCAS |
(b) A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, C. H. Schiesser, Org. Biomol. Chem. 2011, 9, 1736.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. N. Hancock, C. H. Schiesser, Chem. Commun. 2013, 49, 9892.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) Representative publications of Dowd–Beckwith ring expansion. (a) P. Dowd, S. C. Choi, J. Am. Chem. Soc. 1987, 109, 3493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktl2ht70%3D&md5=d434468fe85ed6da15acfe3b6992a9e2CAS |
(b) P. Dowd, S. C. Choi, J. Am. Chem. Soc. 1987, 109, 6548.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. L. J. Beckwith, D. M. O’Shea, S. W. Westwood, J. Chem. Soc., Chem. Commun. 1987, 666.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. L. J. Beckwith, D. M. O’Shea, S. W. Westwood, J. Am. Chem. Soc. 1988, 110, 2565.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Dowd, S. C. Choi, Tetrahedron 1989, 45, 77.
| Crossref | GoogleScholarGoogle Scholar |
(f) W. R. Bowman, P. J. Westlake, Tetrahedron 1992, 48, 4027.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. Dowd, W. Zhang, Chem. Rev. 1993, 93, 2091 and references cited.
| Crossref | GoogleScholarGoogle Scholar |