Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Label-Free and Sensitive Detection of BRCA1 and TB4 DNA Sequences with Water-Soluble Cationic Polythiophenes

Shaohong Zhou A , Huanhuan Ling A , Yun Ma A , Yan Zhou A , Wenqi Du A , Meifang Cui A , Yong Xia A , Liqiang Yan A , Hongtao Yao A and Zhengjian Qi A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.

B Corresponding author. Email: qizhengjian@seu.edu.cn

Australian Journal of Chemistry 69(4) 473-477 https://doi.org/10.1071/CH15395
Submitted: 1 July 2015  Accepted: 16 September 2015   Published: 1 October 2015

Abstract

A sensitive method for BRCA1 and TB4 DNA sequences detection using water-soluble cationic polythiophenes, poly(3-(1′-ethoxy-2′-N-methyl imidazole)thiophene) (PT) is presented. The fluorescence of PT could be dramatically quenched by the addition of single-stranded DNA (ssDNA; TB4 and BRCA1 sequences). The KSV (Stern–Volmer constant) for TB4 and BRCA1 DNA sequences are 1.46 × 108 and 3.28 × 108 M–1 respectively, and the limits of detection of these two sequences are 1.26 × 10–10 and 0.483 × 10–10 M respectively. The fluorescence of PT would recover to its initial intensity after the addition of complementary ssDNA, whereas sequences with one to three mismatched bases would not. The influences of buffer pH and concentration of NaCl were also investigated systemically in order to further improve the sensitivity. This assay can be completed in a short period of time without any further procedure. Hence, this sensitive, cost-effective, and rapid detection method for BRCA1 and TB4 DNA sequences may contribute to the clinical diagnosis of breast cancer gene mutations in the future.


References

[1]  (a) B. G. Beutel, O. D. Kennedy, Bone 2015, 75, 1.
         | Crossref | GoogleScholarGoogle Scholar | 25659950PubMed |
      (b) Y. H. Chen, G. C. Qin, L. W. Yang, N. F. Yang, Chin. J. Chem. 2015, 33, 463.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Kesteven, M. B. Kannan, R. Walter, H. Khakbaz, H. C. Choe, Mater. Sci. Eng. C 2015, 46, 226.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Miki, J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L. M. Bennett, W. Ding, Science 1994, 266, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtF2ns70%3D&md5=2a938b62be02bb370996a900f99bea08CAS | 7545954PubMed |

[3]  (a) H. Kim, H. H. Kim, J. S. Park, H. J. Shin, J. H. Cha, E. Y. Chae, W. J. Choi, Br. J. Radiol. 2014, 87, 20140142.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M%2FlsVCqsQ%3D%3D&md5=6373f3e40ec40638d2ab76afa6b6a750CAS | 25162970PubMed |
      (b) M. A. Mazurowski, J. Zhang, L. J. Grimm, S. C. Yoon, J. I. Silber, Radiology 2014, 273, 365.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Bahmani, Y. Guerrero, D. Bacon, V. Kundra, V. I. Vullev, B. Anvari, Lasers Surg. Med. 2014, 46, 582.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. A. Ho, M. Leclerc, J. Am. Chem. Soc. 2004, 126, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Chtg%3D%3D&md5=950fc737e16763faa8acd6c2b57ab093CAS | 14759196PubMed |

[5]  M. H. Lan, W. M. Liu, J. C. Ge, J. S. Wu, J. Y. Sun, W. J. Zhang, P. F. Wang, Spectrochim. Acta Part A 2015, 136, 871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslekt7rI&md5=265dd6d59238c453ae3e6d6b8d3ca8a8CAS |

[6]  (a) M. Liu, B. X. Li, X. Cui, Biosens. Bioelectron. 2013, 47, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1CmtLg%3D&md5=9263a74f519cae337e5837c3a4e31693CAS | 23542066PubMed |
      (b) Z. Liu, H.-L. Wang, M. Cotlet, Chem. Commun. 2014, 50, 11311.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) C. Li, M. Numata, T. Hasegawa, K. Sakurai, S. Shinkai, Chem. Lett. 2005, 34, 1354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKjsrvL&md5=06571332067eafa8c09b12f80a334c7eCAS |
      (b) C. Li, M. Numata, M. Takeuchi, S. Shinkai, Angew. Chem. Int. Ed. 2005, 44, 6371.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. P. R. Nilsson, A. Herland, P. Hammarstrom, O. Inganas, Biochemistry 2005, 44, 3718.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Ma, Y. Xia, L. Q. Yan, F. Wang, Z. H. Miao, M. F. Cui, H. T. Yao, Z. J. Qi, Anal. Methods 2015, 7, 5814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt12isLY%3D&md5=b3bbb24030f326c9631c83adbec53f51CAS |

[9]  (a) P. Bellini, P. Nesi, A. Venturi, J. Vis. Lang. Comput. 2014, 25, 703.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Bloβfeld, M. Gerstl, U. Hugentobler, D. Angermann, H. Muller, Adv. Space Res. 2014, 54, 1049.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. H. Chu, Y. H. Chan, J. Intell. Manuf. 2012, 23, 1559.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. F. Karlsson, P. Asberg, K. P. R. Nilsson, O. Inganas, Chem. Mater. 2005, 17, 4204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVCls7o%3D&md5=87075c85522b3e9323614a35752c9358CAS |

[11]  H. Sawai, M. Yamanaka, H. Sugimoto, Y. Shiro, S. Aono, J. Biol. Chem. 2012, 287, 30755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yqtLrL&md5=0e0b6c766c3c0784cfc622fa2dcf18d7CAS | 22798069PubMed |

[12]  H. L. Guan, P. Zhou, S. Zeng, X. L. Zhou, Y. Wang, Z. K. He, Talanta 2009, 79, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVCmu78%3D&md5=a586189aed00447f23db16ef3224eb90CAS |

[13]  R. Y. Zhou, C. Xu, J. Dong, G. J. Wang, Biosens. Bioelectron. 2015, 65, 103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOrurbF&md5=b570ad8362030a2dc42e338a85e7274dCAS |

[14]  K. Y. Pu, B. Liu, Adv. Funct. Mater. 2009, 19, 1371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Kjtrw%3D&md5=c6ef282a941b35226be9a735f19d568fCAS |

[15]  J. Tarabeux, B. Zeitouni, V. Moncoutier, H. Tenreiro, K. Abidallah, S. Lair, P. Legoix-Ne, Q. Leroy, E. Rouleau, L. Golmard, E. Barillot, M. H. Stern, T. Rio-Frio, D. Stoppa-Lyonnet, C. Houdayer, Eur. J. Hum. Genet. 2014, 22, 535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlCksLk%3D&md5=f5b5fb7427044aa9709ae2f12502c168CAS | 23942203PubMed |

[16]  Y. Q. Zuo, B. Chun, S. A. Potthoff, N. Kazi, T. J. Brolin, D. Orhan, H. C. Yang, L. J. Ma, V. Kon, T. Myohanen, N. E. Rhaleb, O. A. Carretero, A. B. Fogo, Kidney Int. 2013, 84, 1166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKgsbfK&md5=46d4af722095f8231c41494ce18e9adaCAS |

[17]  L. H. Wang, X. F. Liu, Q. Yang, Q. L. Fan, S. P. Song, C. H. Fan, W. Huang, Biosens. Bioelectron. 2010, 25, 1838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOntLc%3D&md5=683af4ef54ca4155ce47ac8fa248234dCAS |

[18]  (a) J. Chen, S. M. Le, A. Basu, W. J. Chazin, J. Yan, Sci. Rep. 2015, 5, article number 9296.
         | Crossref | GoogleScholarGoogle Scholar | 26404114PubMed |
      (b) C. L. Fasching, P. Cejka, S. C. Kowalczykowski, W. D. Heyer, Mol. Cell 2015, 57, 595.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Gong, H. J. Gong, X. Pan, C. Q. Chang, Z. Ou, S. F. Ye, L. Yin, L. N. Yang, T. Tao, Z. H. Zhang, C. Liu, D. P. Lane, J. R. Peng, J. Chen, Cell Res. 2015, 25, 351.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Hedglin, Y. R. Zhang, P. J. O’Brien, Biochemistry 2015, 54, 557.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) Z. N. Ozturk, V. Talame, M. Deyholos, C. B. Michalowski, D. W. Galbraith, N. Gozukirmizi, R. Tuberosa, H. J. Bohnert, Plant Mol. Biol. 2002, 48, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWrtr0%3D&md5=1b04369e36ea35d27954cc62cd0cfa60CAS |
      (b) R. Zhou, X. Y. Dong, L. L. Song, H. Jing, J. Lumin. 2014, 155, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. Papadopoulou, R. J. Green, R. A. Frazier, J. Agric. Food Chem. 2005, 53, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOhsb%2FM&md5=c93bf112f0cf4256d594deb48d543f83CAS | 15631523PubMed |

[21]  (a) A. D. Child, J. R. Reynolds, Macromolecules 1994, 27, 1975.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFantbk%3D&md5=622c3ffb2459fb72bb8788fbda5c864dCAS |
      (b) J. Wang, D. L. Wang, E. K. Miller, D. Moses, G. C. Bazan, A. J. Heeger, Macromolecules 2000, 33, 5153.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  W. L. Yu, L. M. Zhang, B. Q. Zhang, Appl. Mech. Mater. 2012, 220–223, 2450.
         | Crossref | GoogleScholarGoogle Scholar |