Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aryl-Substituted Boron Subphthalocyanines and their Application in Organic Photovoltaics

Catherine Bonnier A D , David S. Josey A D and Timothy P. Bender A B C E
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5.

B Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, Canada M5S 3E4.

C Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, Canada M5S 3H6.

D These authors contributed equally to preparing the contents of this paper.

E Corresponding author. Email: tim.bender@utoronto.ca

Australian Journal of Chemistry 68(11) 1750-1758 https://doi.org/10.1071/CH15381
Submitted: 26 June 2015  Accepted: 30 July 2015   Published: 16 September 2015

Abstract

A family of five axial aryl-substituted boron subphthalocyanine (BsubPc) derivatives bearing a hydrido, methyl, methoxy, phenyl, or fluoro substituent at the para position of the aryl were synthesised from Br-BsubPc and the corresponding aryl Grignard reagent in moderate yields. The physicochemical characterisation of these derivatives gave similar absorption, photoluminescence, and cyclic voltammetry profiles and photoluminescence quantum yields, indicating that the nature of the substituent at the para position does not influence the basic photophysical properties of this generic class of BsubPcs. Conversely, the solid-state structural arrangement obtained from single crystals is highly dependent on the para substituent; for the non-polar hydrido, methyl, and phenyl substituents, only concave isoindole π interactions are present. Substitution for the polar methoxy or fluoro ligand affords one-dimensional ribbons formed by convex π interactions, where these ribbons further interact through concave isoindole π interactions with the adjacent ribbon, creating an extended two-dimensional π network. On incorporation of the hydrido, methyl, and fluoro derivatives into organic photovoltaic (OPV) devices, similar results and device metrics were obtained with the methyl and fluoro derivatives. Both, however, were significantly outperformed by the hydrido derivative. The uniqueness of the hydrido derivative is only realised once incorporated into OPVs as it shares the same basic physical properties as the other derivatives. Given these findings, we identify the hydrido derivative as the aryl-BsubPc with the most promise for future work in OPVs.


References

[1]  G. E. Morse, T. P. Bender, ACS Appl. Mater. Interfaces 2012, 4, 5055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGmsrfI&md5=a12d1409e9a26db992d9f5f3a1cb308fCAS | 22979940PubMed |

[2]  C. E. Mauldin, C. Piliego, D. Poulsen, D. A. Unruh, C. Woo, B. Ma, J. L. Mynar, J. M. J. Fréchet, ACS Appl. Mater. Interfaces 2010, 2, 2833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFarsb7J&md5=e4d39adcc2ba5c926f5ed296d5f504caCAS |

[3]  V. R. Ferro, L. A. Poveda, C. G. Claessens, R. H. González-Jonte, J. M. García de la Vega, Int. J. Quantum Chem. 2003, 91, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslahtw%3D%3D&md5=a73e5be63f22f725afeadd265b7e86b8CAS |

[4]  H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, P. Heremans, Adv. Funct. Mater. 2007, 17, 2653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurrO&md5=9d0b3d118d93cafef0b9098ab30cfe40CAS |

[5]  K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2006, 128, 8108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlSntr8%3D&md5=bc02543fcc94871dceb0d646d2092686CAS | 16787054PubMed |

[6]  P. Sullivan, A. Duraud, I. Hancox, N. Beaumont, G. Mirri, J. H. R. Tucker, R. A. Hatton, M. Shipman, T. S. Jones, Adv. Energy Mater. 2011, 1, 352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslWqurk%3D&md5=0af7525964decec1d26edaf0be4b9466CAS |

[7]  K. Cnops, B. P. Rand, D. Cheyns, P. Heremans, Appl. Phys. Lett. 2012, 101, 143301.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  N. Beaumont, J. S. Castrucci, P. Sullivan, G. E. Morse, A. S. Paton, Z.-H. Lu, T. P. Bender, T. S. Jones, J. Phys. Chem. C 2014, 118, 14813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Kktr4%3D&md5=8bf98ec631d806e720340d089ce4b8a7CAS |

[9]  K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, P. Heremans, Nat. Commun. 2014, 5, 4406/1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVymsLs%3D&md5=c465d84094b83b48aee5dfc9aac5cb6fCAS |

[10]  Y.-H. Chen, J.-H. Chang, G.-R. Lee, I. W. Wu, J.-H. Fang, C.-I. Wu, T. W. Pi, Appl. Phys. Lett. 2009, 95, 133302.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y.-H. Chen, Y.-J. Chang, G.-R. Lee, J.-H. Chang, I.-W. Wu, J.-H. Fang, S.-H. Hsu, S.-W. Liu, C.-I. Wu, T.-W. Pi, Org. Electron. 2010, 11, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Snu70%3D&md5=5e508cbf50b669f218b01e7bef2adfabCAS |

[12]  Y.-H. Chen, Y.-J. Cheng, G.-R. Lee, C.-I. Wu, T.-W. Pi, Org. Electron. 2011, 12, 562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFWnsb4%3D&md5=d79c2fbb0def68d1d59bcb2d62b18b96CAS |

[13]  M. V. Fulford, D. Jaidka, A. S. Paton, G. E. Morse, E. R. L. Brisson, A. J. Lough, T. P. Bender, J. Chem. Eng. Data 2012, 57, 2756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gnu77F&md5=df00a9f6576c940616353459fdacf0cdCAS |

[14]  G. E. Morse, M. G. Helander, J. F. Maka, Z.-H. Lu, T. P. Bender, ACS Appl. Mater. Interfaces 2010, 2, 1934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVeitrY%3D&md5=e63da68620f59010d05f131971416cdaCAS |

[15]  G. E. Morse, J. S. Castrucci, M. G. Helander, Z.-H. Lu, T. P. Bender, ACS Appl. Mater. Interfaces 2011, 3, 3538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2ntL%2FI&md5=853b4a4c74f29adb84f0eb17ee7f7aa1CAS | 21812440PubMed |

[16]  J. Rauschnabel, M. Hanack, Tetrahedron Lett. 1995, 36, 1629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktl2rurk%3D&md5=956e22904518b21bf2c9bec4ca25a542CAS |

[17]  R. Potz, M. Göldner, H. Hückstädt, U. Cornelissen, A. Tutaß, H. Homborg, Z. Anorg. Allg. Chem. 2000, 626, 588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVOmtr4%3D&md5=b6418612f1933eea73ba810231906207CAS |

[18]  J. Guilleme, D. González-Rodríguez, T. Torres, Angew. Chem., Int. Ed. 2011, 50, 3506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFWmt7w%3D&md5=81dfa53486c720aa8a36c30c6d7f0576CAS |

[19]  (a) F. Camerel, G. Ulrich, P. Retailleau, R. Ziessel, Angew. Chem., Int. Ed. 2008, 47, 8876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgtLfI&md5=f9d624feb76611b2591771e939d4fed7CAS |
      (b) H.-P. JacquotdeRouville, R. Garbage, F. Ample, A. Nickel, J. Meyer, F. Moresco, C. Joachim, G. Rapenne, Chem. – Eur. J. 2012, 18, 8925.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  D. González-Rodríguez, T. Torres, D. M. Guldi, J. Rivera, M. Á. Herranz, L. Echegoyen, J. Am. Chem. Soc. 2004, 126, 6301.
         | Crossref | GoogleScholarGoogle Scholar | 15149228PubMed |

[21]  S. Fery-Forgues, D. Lavabre, J. Chem. Educ. 1999, 76, 1260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslWht74%3D&md5=35658339f9cfa25129e822c93b06bd4aCAS |

[22]  N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, J. Am. Chem. Soc. 1999, 121, 9096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVeqs74%3D&md5=7d8ddde94cb7ea3ef327de8bd15aa305CAS |

[23]  M. Geyer, F. Plenzig, J. Rauschnabel, M. Hanack, B. del Rey, A. Sastre, T. Torres, Synthesis 1996, 13, 1139.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  C. Bonnier, T. P. Bender, Molecules 2015, in press.

[25]  C. Adamo, D. Jacquemin, Chem. Soc. Rev. 2013, 42, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosV2jtA%3D%3D&md5=74ac4e42fb9f7973f102b8fddc35cefaCAS | 23117144PubMed |

[26]  G. E. Morse, M. G. Helander, J. Stanwick, J. M. Sauks, A. S. Paton, Z.-H. Lu, T. P. Bender, J. Phys. Chem. C 2011, 115, 11709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGjtb0%3D&md5=490caad8291d7a6eeb33d737ebdabfbbCAS |

[27]  T. P. Bender, J. F. Graham, J. M. Duff, Chem. Mater. 2001, 13, 4105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVGntbw%3D&md5=3b792a25f43a10c36d3b981253d2eb68CAS |

[28]  D. González-Rodríguez, T. Torres, M. M. Olmstead, J. Rivera, M. Á. Herranz, L. Echegoyen, C. A. Castellanos, D. M. Guldi, J. Am. Chem. Soc. 2006, 128, 10680.
         | Crossref | GoogleScholarGoogle Scholar | 16910653PubMed |

[29]  B. C. Thompson, Y.-G. Kim, J. R. Reynolds, Macromolecules 2005, 38, 5359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVWjtLk%3D&md5=90ce17ddef0faa53695ab729e31fce7dCAS |

[30]  M. G. Helander, G. E. Morse, J. Qiu, J. S. Castrucci, T. P. Bender, Z.-H. Lu, ACS Appl. Mater. Interfaces 2010, 2, 3147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWitLfL&md5=975171b38742c68e4c448d3e631b5c86CAS | 20961135PubMed |

[31]  C.-T. Chou, W.-L. Tang, Y. Tai, C.-H. Lin, C.-H. J. Liu, L.-C. Chen, K.-H. Chen, Thin Solid Films 2012, 520, 2289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSjtLc%3D&md5=1fe3ddd62ed637625161525b1e44c948CAS |

[32]  M. K. Engel, J. Yao, H. Maki, H. Takeuchi, H. Yonehara, C. Pac, Rep. Kawamura Inst. Chem. Res. 1997, 9, 53.

[33]  A. S. Paton, G. E. Morse, A. J. Lough, T. P. Bender, CrystEngComm 2011, 13, 914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVCiu7s%3D&md5=6811ab4c36095a33b52227ba3d96cc4fCAS |

[34]  P. Sullivan, S. Schumann, R. Da Campo, T. Howells, A. Duraud, M. Shipman, R. A. Hatton, T. S. Jones, Adv. Energy Mater. 2013, 3, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVGjsL8%3D&md5=e56c80dbcba3e2dcd01fce93c0718709CAS |

[35]  D. S. Josey, J. S. Castrucci, J. D. Dang, B. H. Lessard, T. P. Bender, ChemPhysChem 2015, 16, 1245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1ymsbg%3D&md5=782536351d7bdfa8a58f7f576e764450CAS | 25765007PubMed |

[36]  S. M. Menke, R. J. Holmes, Energy Environ. Sci. 2014, 7, 499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFakt70%3D&md5=5b919d54d20cb19a56bd724017b50d3bCAS |

[37]  B. P. Rand, D. P. Burk, S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 115327.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  S. Chen, S.-W. Tsang, T.-H. Lai, J. R. Reynolds, F. So, Adv. Mater. 2014, 26, 6125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1anur3J&md5=07dc71c3f62665918ffc3565cd5647a9CAS | 25070573PubMed |

[39]  B. Qi, J. Wang, Phys. Chem. Chem. Phys. 2013, 15, 8972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFyksr4%3D&md5=1ebfc42bacc4c087ee1c2baddfba6f61CAS | 23652780PubMed |

[40]  M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O’Brien, C. Valente, Chem. – Eur. J. 2007, 13, 150.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlCguw%3D%3D&md5=1f435efee8b21ae65bf340942e2ad490CAS | 17143919PubMed |

[41]  E. Lindbäck, Y. Zhou, L. Marinescu, C. M. Pedersen, M. Bols, J. Org. Chem. 2010, 2010, 3883.