Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fullerene–Pyrrolidine Biferrocene Donor–Acceptor Triads: Synthesis and Effects of Fullerene[60] on the Electronic Communication of the Two Ferrocene Units in Biferrocene

Zhenyi Wu A C and Mian Jiang B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

B Department of Natural Sciences, University of Houston-Downtown, 1 Main Street, Houston, TX 77002, USA.

C Corresponding author. Email: zywu@xmu.edu.cn

Australian Journal of Chemistry 69(4) 440-445 https://doi.org/10.1071/CH15377
Submitted: 25 June 2015  Accepted: 27 August 2015   Published: 29 September 2015

Abstract

A novel nanoscale molecule, fullerene[60]-based biferrocene (C60-ph-Fc-Fc), was prepared via covalent grafting of biferrocene onto C60 using 1,3-dipolar cycloaddition and was fully characterized by mass spectrometry, nuclear magnetic resonance spectroscopy, infrared spectroscopy, ultraviolet-visible spectroscopy, and fluorescence spectroscopy. Cyclic voltammetry studies showed that C60-ph-Fc-Fc undergoes four successive quasi-reversible processes in the potential window of –2.0~0.40 V (versus Fc+/Fc). The biferrocene (moiety) exhibited significant electronic communication between the two ferrocenyl groups both before and after grafting onto C60. Grafting of fullerene led to weakening in the electronic interaction, and the comproportionation constant decreased by nearly five orders of magnitude from 1.56 × 106 for Fc-Fc to 88 for C60-ph-Fc-Fc, indicating that the electronic communication between halves of the biferrocene could be effectively modified by grafting of C60. The temperature-dependent magnetic susceptibility (2–300 K) study showed that there was a strong antiferromagnetic interaction between the ferrocene FeII centres.


References

[1]  (a) A. Donoli, A. Bisello, R. Cardena, C. Prinzivalli, M. Crisma, S. Santi, Organometallics 2014, 33, 1135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1Siurc%3D&md5=0c0966027730d860738dcb13c29065ecCAS |
      (b) W. R. Goetsch, P. V. Solntsev, C. Van Stappen, A. A. Purchel, S. V. Dudkin, V. N. Nemykin, Organometallics 2014, 33, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  G. Bottari, O. Trukhina, M. Ince, T. Torres, Coord. Chem. Rev. 2012, 256, 2453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVyiurw%3D&md5=2feaf6fd2d4753f7de1c416666caff8fCAS |

[3]  M. Morana, H. Azimi, G. Dennler, H.-J. Egelhaaf, M. Scharber, K. Forberich, J. Hauch, R. Gaudiana, D. Waller, Z. Zhu, K. Hingerl, S. S. van Bavel, J. Loos, C. J. Brabec, Adv. Funct. Mater. 2010, 20, 1180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1ChsLY%3D&md5=f05ac90f6291aa76f1abca0e26565488CAS |

[4]  (a) L. G. C. Rego, B. C. Hames, K. T. Mazon, J.-O. Joswig, J. Phys. Chem. C 2014, 118, 126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSqu73F&md5=aa9c16a84a67234dea0c5cc04dabddaeCAS |
      (b) C. J. Ziegler, K. Chanawanno, A. Hasheminsasab, Y. V. Zatsikha, E. Maligaspe, V. N. Nemykin, Inorg. Chem. 2014, 53, 4751.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Otsuki, T. Akasaka, K. Araki, Coord. Chem. Rev. 2008, 252, 32.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtLbJ&md5=d54c65fadf6772c815116b35513d1129CAS |

[6]  A. Monti, H. J. M. de Groot, F. Buda, J. Phys. Chem. C 2014, 118, 15600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOjtrnM&md5=b9c745a714f0c01938518c9079f5f47cCAS |

[7]  (a) S. J. Dammer, P. V. Solntsev, J. R. Sabin, V. N. Nemykin, Inorg. Chem. 2013, 52, 9496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1arsrzE&md5=dcc2855cc20e2157216de1251f7c268cCAS | 23919915PubMed |
      (b) E. Maligaspe, M. R. Hauwiller, Y. V. Zatsikha, J. A. Hinke, P. V. Solntsev, D. A. Blank, V. N. Nemykin, Inorg. Chem. 2014, 53, 9336.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) V. Bandi, F. P. D’Souza, H. B. Gobeze, F. D’Souza, Chem. – Eur. J. 2015, 21, 2669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFaiurzE&md5=f53a8c8d68d38e75d1746b8747e4bdeeCAS | 25522294PubMed |
      (b) P. Cavigli, T. Da Ros, A. Kahnt, M. Gamberoni, M. T. Indelli, E. Iengo, Inorg. Chem. 2015, 54, 280.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Barthelmes, J. Kuebel, A. Winter, M. Waechtler, C. Friebe, B. Dietzek, U. S. Schubert, Inorg. Chem. 2015, 54, 3159.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Mochida, K. Takazawa, H. Matsui, M. Takahashi, M. Takeda, M. Sato, Y. Nishio, K. Kajita, H. Mori, Inorg. Chem. 2005, 44, 8628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOis73I&md5=467b47cc7d0abca58776a801170119ecCAS | 16271005PubMed |

[10]  T. Y. Dong, T. Kambara, D. N. Hendrickson, J. Am. Chem. Soc. 1986, 108, 5857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltlCjtL8%3D&md5=c579e29f7d69df8a33f6e6c583121a37CAS | 22175341PubMed |

[11]  (a) W. H. Morrison, S. Krogsrud, D. N. Hendrickson, Inorg. Chem. 1973, 12, 1998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvVKku7Y%3D&md5=7560a77d18007fe86e453defffab8014CAS |
      (b) C. Levanda, K. Bechgaard, D. O. Cowan, J. Org. Chem. 1976, 41, 2700.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) D. Wrobel, A. Graja, Coord. Chem. Rev. 2011, 255, 2555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rsLbE&md5=45fcf97db0663c3fd42df404b54e624dCAS |
      (b) W. J. Wang, Y. L. Lay, C. S. Chang, H. S. Chiu, K. S. Chuang, B. C. Wang, Synth. Met. 1997, 86, 2293.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) D. M. Wood, W. J. Meng, T. K. Ronson, A. R. Stefankiewicz, J. K. M. Sanders, J. R. Nitschke, Angew. Chem., Int. Ed. 2015, 54, 3988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVCru7k%3D&md5=a181d21bd63a9f1b8014f18e1d0dee90CAS |
      (b) L. Moreira, J. Calbo, B. M. Illescas, J. Arago, I. Nierengarten, B. Delavaux-Nicot, E. Ortí, N. Martín, J.-F. Nierengarten, Angew. Chem., Int. Ed. 2015, 54, 1255.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) Z. Y. Wu, R. B. Huang, S. Y. Xie, L. S. Zheng, Dalton Trans. 2011, 40, 8353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFGgtrs%3D&md5=c7f683ead86e04855fe6d96a1fb546d0CAS | 21769337PubMed |
      (b) Z. Y. Wu, W. Wang, Fullerenes, Nanotubes, Carbon Nanostruct. 2015, 23, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  R. J. Xie, L. M. Han, Q. L. Suo, H. L. Hong, M. H. Luo, J. Coord. Chem. 2010, 63, 1700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlanurY%3D&md5=94ad5520b73c4553574330f25ea24fdeCAS |

[16]  S. Campidelli, P. Bourgun, B. Guintchin, J. Furrer, H. Stoeckli-Evans, I. M. Saez, J. W. Goodby, R. Deschenaux, J. Am. Chem. Soc. 2010, 132, 3574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitV2hsrY%3D&md5=9bc096988d937b358679e50efb86f530CAS | 20163119PubMed |

[17]  A. N. Amin, M. E. El-Khouly, N. K. Subbaiyan, M. E. Zandler, S. Fukuzumi, F. D’Souza, Chem. Commun. 2012, 48, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqu77O&md5=fac1b70ff1f1613cf0c30c6bd2322dc1CAS |

[18]  D. M. Guldi, M. Prato, Acc. Chem. Res. 2000, 33, 695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFamsb4%3D&md5=c4b7263cb2f07a9873cc2bc35f483849CAS | 11041834PubMed |

[19]  J. L. Delgado, M. E. El-Khouly, Y. Araki, M. J. Gomez-Escalonilla, P. de la Cruz, F. Oswald, O. Ito, F. Langa, Phys. Chem. Chem. Phys. 2006, 8, 4104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWjsrs%3D&md5=31a0a0f7c61daf3ffcf2181fc59d71bcCAS | 17028699PubMed |

[20]  D. M. D’Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehtLY%3D&md5=d7e58bd1f667c16c725fe5eac2079c5cCAS | 16771450PubMed |

[21]  Y. L. Wang, A. Rapakousiou, G. Chastanet, L. Salmon, J. Ruiz, D. Astruc, Organometallics 2013, 32, 6136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFertbrI&md5=8592ce5f7a5eed561b4aeb91845f7bbeCAS |

[22]  I. Shimizu, H. Umezawa, T. Kanno, T. Izumi, A. Kasahara, Bull. Chem. Soc. Jpn. 1983, 56, 2023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFGiurw%3D&md5=f7f0e0b483b31dae90d931769264611dCAS |

[23]  (a) T. Da Ros, M. Prato, F. Novello, M. Maggini, E. Banfi, J. Org. Chem. 1996, 61, 9070.
         | Crossref | GoogleScholarGoogle Scholar | 11667904PubMed |
      (b) M. Prato, M. Maggini, G. Scorrano, Synth. Met. 1996, 77, 89.
         | Crossref | GoogleScholarGoogle Scholar |