Novel MII (M = Mn, Fe, Co, Ni) Coordination Assemblies Based on 2-(((1-(Pyridin-n-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyridine Ligands
Lu Jiang A B , Zhe Wang B , Shi-Qiang Bai B C , Xian Jun Loh B C and T. S. Andy Hor A B CA Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.
B Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Republic of Singapore.
C Corresponding authors. Email: bais@imre.a-star.edu.sg; lohxj@imre.a-star.edu.sg; andyhor@nus.edu.sg
Australian Journal of Chemistry 69(6) 645-651 https://doi.org/10.1071/CH15362
Submitted: 18 June 2015 Accepted: 11 October 2015 Published: 19 November 2015
Abstract
Three novel 1D coordination polymers [M(L1)2(OH2)2(ClO4)2]n (M = Mn (1), Co (2)) and [Ni(L1)2(OH2)2(NO3)2]n (3), and two mononuclear complexes [Fe(L2)2(MeOH)2(ClO4)2] (4) and [Co(L2)2(OH2)2(ClO4)2] (5) were prepared from 2-(((1-(pyridin-n-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)thio)pyridine ligands (n = 4 (L1), and 2 (L2)). The complexes 1–5 were characterised by single-crystal X-ray diffraction (XRD), powder XRD, thermogravimetric analysis, elemental analysis, infrared, and electrospray ionisation mass spectrometry analyses. The complexes 1–5 showed good purity and thermal stability. The structural outcome of 1–3 is driven by the double and open-bridging coordination mode preference of the spacer L1 which favours the formation of polymeric 18-member metallomacrocycles. Use of an isomeric L2 with different picolyl nitrogen orientation, which favours chelate formation, resulted in mononuclear complexes 4 and 5. This work demonstrates a simple but powerful spacer-directed strategy to define and construct coordination frameworks tuned by different metal characters and hybrid 1,2,3-triazoles.
References
[1] (a) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=2b75ad77141fdd7365ac7d2bfc21afa0CAS | 19384441PubMed |
(b) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 2009, 253, 3042.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
| Crossref | GoogleScholarGoogle Scholar |
(f) H.-L. Jiang, Q. Xu, Chem. Commun. 2011, 47, 3351.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar |
(i) D. Liu, Z.-G. Ren, H.-X. Li, J.-P. Lang, N.-Y. Li, B. F. Abrahams, Angew. Chem. Int. Ed. 2010, 49, 4767.
| Crossref | GoogleScholarGoogle Scholar |
(j) D. Liu, J.-P. Lang, B. F. Abrahams, J. Am. Chem. Soc. 2011, 133, 11042.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlu74%3D&md5=f36130b866c810fd8d02bb68c955a226CAS | 17264919PubMed |
(b) E. C. Constable, Coord. Chem. Rev. 2008, 252, 842.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. H. Northrop, Y.-R. Zheng, K.-W. Chi, P. J. Stang, Acc. Chem. Res. 2009, 42, 1554.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. R. Cook, Y.-R. Zheng, P. J. Stang, Chem. Rev. 2013, 113, 734.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) P. J. Steel, Coord. Chem. Rev. 1990, 106, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsVKhtA%3D%3D&md5=20c8ea3856dd655f1bb226d8474d4c29CAS |
(b) S.-Q. Bai, D. J. Young, T. S. A. Hor, Chem. Asian J. 2011, 6, 292.
| Crossref | GoogleScholarGoogle Scholar |
(c) S.-Q. Bai, L. Jiang, D. J. Young, T. S. A. Hor, Dalton Trans. 2015, 44, 6075.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) H. Struthers, T. L. Mindt, R. Schibli, Dalton Trans. 2010, 39, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2isL3O&md5=6a7f16c09b21133254b5009b7c110a17CAS | 20066208PubMed |
(b) G. Aromí, L. A. Barrios, O. Roubeau, P. Gamez, Coord. Chem. Rev. 2011, 255, 485.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. D. Crowley, D. A. McMorran, in Click Triazoles (Ed. J. Košmrlj) 2012, Vol. 28, Ch. 2, pp. 31–83 (Springer: Berlin).
(d) C. B. Anderson, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, J. D. Crowley, Organometallics 2013, 32, 788.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Hua, K. Q. Vuong, M. Bhadbhade, B. A. Messerle, Organometallics 2012, 31, 1790.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=46f886065b9998ec94a8f2463394b06aCAS |
(b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Liang, D. Astruc, Coord. Chem. Rev. 2011, 255, 2933.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. H. Binder, R. Sachsenhofer, Macromol. Rapid Commun. 2007, 28, 15.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) L. Jiang, Z. Wang, S.-Q. Bai, T. S. A. Hor, CrystEngComm 2013, 15, 10451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSmsLfL&md5=36e1a7efe7284fb0cb6778be0804e8c4CAS |
(b) S.-Q. Bai, J. Y. Kwang, L. L. Koh, D. J. Young, T. S. A. Hor, Dalton Trans. 2010, 39, 2631.
| Crossref | GoogleScholarGoogle Scholar |
(c) S.-Q. Bai, L. Jiang, J.-L. Zuo, C.-H. Yan, T. S. A. Hor, Aust. J. Chem. 2013, 66, 1029.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) D. P. Day, T. Dann, D. L. Hughes, V. S. Oganesyan, D. Steverding, G. G. Wildgoose, Organometallics 2014, 33, 4687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnt1SgsA%3D%3D&md5=a98ae62602fa2613d05cea294090a6a2CAS |
(b) A. Białońska, R. Bronisz, Ł. Baranowski, Eur. J. Inorg. Chem. 2013, 720.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Białońska, R. Bronisz, J. Kusz, M. Zubko, Eur. J. Inorg. Chem. 2013, 884.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Jevric, T. Zheng, N. K. Meher, J. C. Fettinger, M. Mascal, Angew. Chem. Int. Ed. 2011, 50, 717.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Schweinfurth, F. Weisser, D. Bubrin, L. Bogani, B. Sarkar, Inorg. Chem. 2011, 50, 6114.
| Crossref | GoogleScholarGoogle Scholar |
(f) D. Schweinfurth, C.-Y. Su, S.-C. Wei, P. Braunstein, B. Sarkar, Dalton Trans. 2012, 41, 12984.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Schweinfurth, J. Krzystek, I. Schapiro, S. Demeshko, J. Klein, J. Telser, A. Ozarowski, C.-Y. Su, F. Meyer, M. Atanasov, F. Neese, B. Sarkar, Inorg. Chem. 2013, 52, 6880.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. K. Vellas, J. E. M. Lewis, M. Shankar, A. Sagatova, J. D. A. Tyndall, B. C. Monk, C. M. Fitchett, L. R. Hanton, J. D. Crowley, Molecules 2013, 18, 6383.
| Crossref | GoogleScholarGoogle Scholar |
(i) D. Schweinfurth, S. Demeshko, M. M. Khusniyarov, S. Dechert, V. Gurram, M. R. Buchmeiser, F. Meyer, B. Sarkar, Inorg. Chem. 2012, 51, 7592.
| Crossref | GoogleScholarGoogle Scholar |
(j) B. C. Hughes, Z. Lu, D. M. Jenkins, Chem. Commun. 2014, 50, 5273.
| Crossref | GoogleScholarGoogle Scholar |
(k) T. Biet, N. Avarvari, CrystEngComm 2014, 16, 6612.
| Crossref | GoogleScholarGoogle Scholar |
(l) B. Štefane, F. Perdih, A. Višnjevac, F. Požgan, New J. Chem. 2015, 39, 566.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) S.-Q. Bai, A. M. Yong, J. J. Hu, D. J. Young, X. Zhang, Y. Zong, J. Xu, J.-L. Zuo, T. S. A. Hor, CrystEngComm 2012, 14, 961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVCgsg%3D%3D&md5=c9a5a402d2b36f839197c036e4ad8234CAS |
(b) S.-Q. Bai, S. Leelasubcharoen, X. Chen, L. L. Koh, J.-L. Zuo, T. S. A. Hor, Cryst. Growth Des. 2010, 10, 1715.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. F. Manbeck, W. W. Brennessel, C. M. Evans, R. Eisenberg, Inorg. Chem. 2010, 49, 2834.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. K. C. Lo, G. S. Huff, J. R. Cubanski, A. D. W. Kennedy, C. J. McAdam, D. A. McMorran, K. C. Gordon, J. D. Crowley, Inorg. Chem. 2015, 54, 1572.
| Crossref | GoogleScholarGoogle Scholar |
(e) S.-Q. Bai, L. Jiang, B. Sun, D. J. Young, T. S. A. Hor, CrystEngComm 2015, 17, 3305.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) L. Jiang, Z. Wang, S.-Q. Bai, T. S. A. Hor, Dalton Trans. 2013, 42, 9437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCiur4%3D&md5=764261c15b671331fdb92ae8ad35cac2CAS | 23695801PubMed |
(b) S.-Q. Bai, L. Jiang, A. L. Tan, S. C. Yeo, D. J. Young, T. S. A. Hor, Inorg. Chem. Front. 2015, 2, 1011.
| Crossref | GoogleScholarGoogle Scholar |
[10] SMART & SAINT Software Reference Manuals 2000 (Bruker AXSGmbH: Karlsruhe).
[11] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVOmtrc%3D&md5=dacb9edecec7b2f24e4433333254f894CAS |
[12] G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |