A Facile Preparation of α-Aryl Carboxylic Acid via One-Flow Arndt–Eistert Synthesis
Shinichiro Fuse A B C , Yuma Otake A , Yuto Mifune A and Hiroshi Tanaka AA Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
B Current address: Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
C Corresponding author. Email: sfuse@res.titech.ac.jp
Australian Journal of Chemistry 68(11) 1657-1661 https://doi.org/10.1071/CH15342
Submitted: 10 June 2015 Accepted: 14 July 2015 Published: 11 August 2015
Abstract
An efficient, one-flow Arndt–Eistert synthesis was demonstrated. A sequence of acid chloride formation–nucleophilic acyl substitution–Wolff rearrangement–nucleophilic addition was performed in a microflow system without isolating any intermediates, which included a potentially explosive compound. The microflow system was made from simple, inexpensive, and readily available instruments and tubes. α-Aryl esters 2a and 2b were prepared in yields of 33 and 23 % (three steps) respectively.
References
[1] (a) F. Arndt, B. Eistert, W. Partale, Ber. Dtsch. Chem. Ges. 1927, 60, 1364.| Crossref | GoogleScholarGoogle Scholar |
(b) W. E. Bachmann, W. S. Struve, in Organic Reactions (Ed. R. Adams) 1942, Vol. 1, Ch. 2, pp. 38–54 (John Wiley & Sons, Inc.: New York, NY).
[2] B. J. Deadman, S. G. Collins, A. R. Maguire, Chem. – Eur. J. 2015, 21, 2298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGisLbJ&md5=95614b074b29aeadbd1e4ecdf0d9b070CAS | 25404044PubMed |
[3] (a) L. Wolff, Justus Liebigs Ann. Chem. 1902, 325, 129.
| Crossref | GoogleScholarGoogle Scholar |
(b) W. Kirmse, Eur. J. Org. Chem. 2002, 2193.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. S. Newman, P. F. Beal, J. Am. Chem. Soc. 1950, 72, 5163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3MXjs1Sqsw%3D%3D&md5=4ab2e386b7723f490cb6c8f988c778a9CAS |
(b) J.-Y. Winum, M. Kamal, A. Leydet, J.-P. Roque, J.-L. Montero, Tetrahedron Lett. 1996, 37, 1781.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J.-i. Yoshida, Chem. Rec. 2010, 10, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yktLbJ&md5=bbb9b5aec37ec62df03d2bdefe896c58CAS |
(b) S. V. Luis, E. Carcia-Verdugo, Chemical Reactions and Processes Under Flow Conditions 2010 (Royal Society of Chemistry: Cambridge, UK).
(c) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-i. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Baumann, I. R. Baxendale, S. V. Ley, Mol. Divers. 2011, 15, 613.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 4583.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17.
| Crossref | GoogleScholarGoogle Scholar |
(h) J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025.
| Crossref | GoogleScholarGoogle Scholar |
(i) I. R. Baxendale, C. Hornung, S. V. Ley, J. M. Muñoz Molina, A. Wikström, Aust. J. Chem. 2013, 66, 131.
| Crossref | GoogleScholarGoogle Scholar |
(j) N. G. Anderson, Org. Process Res. Dev. 2012, 16, 852.
| Crossref | GoogleScholarGoogle Scholar |
(k) T. Wirth, Microreactors in Organic Chemistry and Catalysis 2013 (Wiley-VCH: Weinheim).
(l) L. N. Protasova, M. Bulut, D. Ormerod, A. Buekenhoudt, J. Berton, C. V. Stevens, Org. Process Res. Dev. 2013, 17, 760.
| Crossref | GoogleScholarGoogle Scholar |
(m) J. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849.
| Crossref | GoogleScholarGoogle Scholar |
(n) V. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6, 746.
| Crossref | GoogleScholarGoogle Scholar |
(o) H. Amii, A. Nagaki, J.-i. Yoshida, Beilstein J. Org. Chem. 2013, 9, 2793.
| Crossref | GoogleScholarGoogle Scholar |
(p) R. M. Myers, D. E. Fitzpatrick, R. M. Turner, S. V. Ley, Chem. – Eur. J. 2014, 20, 12348.
| Crossref | GoogleScholarGoogle Scholar |
(q) S. Ramesh, P. Cherkupally, B. de la Torre, T. Govender, H. Kruger, F. Albericio, Amino Acids 2014, 46, 2091.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki, H. Tanibata, T. Murata, Pure Appl. Chem. 2007, 79, 1959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlartbfO&md5=a6c4c7bbc6dc963d9421d522d2f62ccdCAS |
(b) E. E. Coyle, M. Oelgemoller, Photochem. Photobiol. Sci. 2008, 7, 1313.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Oelgemöller, O. Shvydkiv, Molecules 2011, 16, 7522.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Oelgemöller, Chem. Eng. Technol. 2012, 35, 1144.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Su, N. J. W. Straathof, V. Hessel, T. Noël, Chem. – Eur. J. 2014, 20, 10562.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. M. Schuster, P. Wipf, Isr. J. Chem. 2014, 54, 361.
| Crossref | GoogleScholarGoogle Scholar |
(g) Rapid optimization of photoreactions using parallel microflow reactors has been reported; see: A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller, Org. Lett. 2012, 14, 4342.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. M. Reis, G. Li Puma, Chem. Commun. 2015, 8414.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. S. M. Vaske, M. E. Mahoney, J. P. Konopelski, D. L. Rogow, W. J. McDonald, J. Am. Chem. Soc. 2010, 132, 11379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOksr8%3D&md5=89d6e8686a867a12a3ebfaf70d647beaCAS |
[8] T. P. Willumstad, O. Haze, X. Y. Mak, T. Y. Lam, Y.-P. Wang, R. L. Danheiser, J. Org. Chem. 2013, 78, 11450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Sqs7rO&md5=35c3581987bbcc2065f1ae598362c67aCAS | 24116731PubMed |
[9] S. Garbarino, L. Banfi, R. Riva, A. Basso, J. Org. Chem. 2014, 79, 3615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvVCrtrc%3D&md5=ce9883c8d8a478a6c804ef2ae5b6eed4CAS | 24665997PubMed |
[10] F. Mastronardi, B. Gutmann, C. O. Kappe, Org. Lett. 2013, 15, 5590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ejtL7I&md5=791afd3b4072c7ee102e0a927b2c93e7CAS | 24128181PubMed |
[11] V. D. Pinho, B. Gutmann, C. O. Kappe, RSC Adv. 2014, 4, 37419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCkt7zF&md5=e24a6290b09d9e39d9a2a4eb2fbb4295CAS |
[12] (a) S. Fuse, N. Tanabe, M. Yoshida, H. Yoshida, T. Doi, T. Takahashi, Chem. Commun. 2010, 8722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahurbK&md5=0099b10527d0d817b28e7e4a54e97266CAS |
(b) S. Fuse, N. Tanabe, T. Takahashi, Chem. Commun. 2011, 12661.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Fuse, Y. Mifune, N. Tanabe, T. Takahashi, Org. Biomol. Chem. 2012, 10, 5205.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Fuse, N. Tanabe, A. Tannna, Y. Konishi, T. Takahashi, Beilstein J. Org. Chem. 2013, 9, 2336.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Fuse, Y. Mifune, T. Takahashi, Angew. Chem. Int. Ed. 2014, 53, 851.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Mifune, S. Fuse, H. Tanaka, J. Flow Chem. 2014, 4, 173.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. D. O’Neil, M. K. Bamat, B. R. W. Von, S. Sharma, R. Arudchandran, U.S. Patent 2009 037128 2009.
[14] Z. Du, W. Li, X. Zhu, F. Xu, Q. Shen, J. Org. Chem. 2008, 73, 8966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGns7bJ&md5=6561cbf07cadc3bf25893eb7059bdbb4CAS | 18937411PubMed |
[15] Acid chloride formation using exactly the same substrate has been reported (SOCl2, 1,4-dioxane, reflux, overnight, 99 %); see: S. Belyakov, G. Hamilton, D. Limburg, J. Steiner, M. Vaal, L. Wei, D. Wilkinson, Y. Q. Wu, U.S. Patent 2002 002538 2002.
[16] T. Aoyama, T. Shioiri, Tetrahedron Lett. 1980, 21, 4461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtl2nsrs%3D&md5=f591f8f3fccf43b98f807cebf261b4efCAS |
[17] A. Padwa, R. Layton, Tetrahedron Lett. 1965, 6, 2167.
| Crossref | GoogleScholarGoogle Scholar |