Three 3d–4f Tetranuclear Complexes Based on 2,3,5-Trichlorobenzoic Acid: Syntheses, Structures, and Magnetic Properties
Yu Zhang A and Ji-Min Zheng A BA Department of Chemistry, Nankai University, Tianjin 300071, China.
B Corresponding author. Email: jmzheng@nankai.edu.cn
Australian Journal of Chemistry 69(4) 446-450 https://doi.org/10.1071/CH15338
Submitted: 9 June 2015 Accepted: 27 August 2015 Published: 26 October 2015
Abstract
The solvothermal reactions of 2,3,5-trichlorobenzoic acid (HL) 2,2′-bipyridine (bipy), CoCl2·6H2O, and Ln2O3 afforded three novel 3d–4f tetranuclear complexes Co2Ln2(L)10(bipy)2 (Ln = Dy 1, Ho 2, and Er 3), which have been characterized by single-crystal X-ray diffraction, infrared spectroscopy, and element analyses. Complexes 1–3 crystallize in the triclinic space group P
References
[1] (a) J. F. Berry, Struct. Bonding 2010, 136, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2htbY%3D&md5=59affa4199b8e3bf0c92b2f58e78dce1CAS |
(b) T. D. Harris, C. Coulon, R. Clerac, J. R. Long, J. Am. Chem. Soc. 2011, 133, 123.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Navulla, A. A. Tsirlin, A. M. Abakumov, R. V. Shpanchenko, H. Zhang, E. V. Dikarev, J. Am. Chem. Soc. 2011, 133, 692.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Nippe, E. Bill, J. F. Berry, Inorg. Chem. 2011, 50, 7650.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. L. Diaconescu, Acc. Chem. Res. 2010, 43, 1352.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. K. Mandal, H. W. Roesky, Acc. Chem. Res. 2010, 43, 248.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) X. D. Zhu, Z. J. Lin, T. F. Liu, B. Xu, R. Cao, Cryst. Growth Des. 2012, 12, 4708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Okt73F&md5=a5ec690c723203132e36920f1a06004cCAS |
(b) V. Chandrasekhar, B. Murugesapandian, Acc. Chem. Res. 2009, 42, 1047.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Ungur, M. Thewissen, J. P. Costes, W. Wernsdorfer, L. F. Chibotaru, Inorg. Chem. 2013, 52, 6328.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) H. Zhang, G. L. Zhuang, X. J. Kong, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, Cryst. Growth Des. 2013, 13, 2493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWgsLw%3D&md5=5598167076bb247997dee31f5f433249CAS |
(b) S. K. Singh, K. S. Pedersen, M. Sigrist, C. A. Thuesen, M. Schau-Magnussen, H. Mutka, S. Piligkos, H. Weihe, G. Rajaraman, J. Bendix, Chem. Commun. 2013, 49, 5583.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Papatriantafyllopoulou, K. A. Abboud, G. Christou, Polyhedron 2013, 52, 196.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Y. Xu, F. H. Zhao, Y. X. Che, J. M. Zheng, CrystEngComm 2012, 14, 6869.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Tan, Y. X. Che, J. M. Zheng, Inorg. Chem. Commun. 2013, 37, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWgur%2FM&md5=dc5b65408c201c21ec0881366392c77bCAS |
[5] (a) P. K. Chen, S. R. Batten, Y. Qi, J. M. Zheng, Cryst. Growth Des. 2009, 9, 2756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslCqtrw%3D&md5=0fc3ec6101f230cdca7c5e1a09eacf31CAS |
(b) F. Luo, J. M. Zheng, G. J. Long, Cryst. Growth Des. 2009, 9, 1271.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2009, 9, 1066.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 176.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. K. Chen, Y. X. Che, J. M. Zheng, S. R. Batten, Chem. Mater. 2007, 19, 2162.
| Crossref | GoogleScholarGoogle Scholar |
[6] F. H. Zhao, H. Li, Y. X. Che, J. M. Zheng, V. Vieru, L. F. Chibotaru, F. Grandjean, G. J. Long, Inorg. Chem. 2014, 53, 9785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCqtbrP&md5=6e13d5123dc927d4817428ddcc2b4c34CAS | 25170649PubMed |
[7] Y. Zhu, F. Luo, X. F. Feng, Z. W. Liao, Y. M. Song, H. X. Song, H. X. Huang, X. Z. Tian, G. M. Sun, M. B. Luo, Aust. J. Chem. 2013, 66, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyltrs%3D&md5=15738844597521436f624b2bbc491539CAS |
[8] Y. Zhang, J. M. Zheng, Inorg. Chem. Commun. 2015, 59, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKhtrvE&md5=498a4f556ea409340e52885140f083e5CAS |
[9] (a) C. Papatriantafyllopoulou, T. C. Stamatatos, C. G. Efthymiou, L. Cunha-Silva, F. A. Almeida Paz, S. P. Perlepes, G. Christou, Inorg. Chem. 2010, 49, 9743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmtLnI&md5=7babf3fd4f5536b06b2dd42d9c186dafCAS | 20919709PubMed |
(b) Y. T. Yang, F. H. Zhao, Y. X. Che, J. M. Zheng, Inorg. Chem. Commun. 2011, 14, 1802.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. H. Luo, M. C. Hong, R. H. Wang, R. Cao, L. Han, D. Q. Yuan, Z. Z. Lin, Y. F. Zhou, Inorg. Chem. 2003, 42, 4486.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. P. Huang, J. L. Tian, W. Gu, X. Liu, S. P. Yan, D. Z. Liao, P. Cheng, Cryst. Growth Des. 2010, 10, 1145.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) L. B. L. Escobar, G. P. Guedes, S. Soriano, N. L. Speziali, A. K. Jordão, A. C. Cunha, V. F. Ferreira, C. Maxim, M. A. Novak, M. Andruh, M. G. F. Vaz, Inorg. Chem. 2014, 53, 7508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqsr7J&md5=7aad06797da9152c1c6aa3c14eb47853CAS |
(b) A. S. Dinca, S. Shova, A. E. Ion, C. Maxim, F. Lloret, M. Julve, M. Andruh, Dalton Trans. 2015, 44, 7148.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) X. Q. Zhao, P. Cui, B. Zhao, W. Shi, P. Cheng, Dalton Trans. 2011, 40, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslWgtw%3D%3D&md5=ea7cc1d001b4603cbc8a0fa12e21dacaCAS | 21152624PubMed |
(b) V. Chandrasekhar, B. M. Pandian, R. Azhakar, J. J. Vittal, R. Cle’rac, Inorg. Chem. 2007, 46, 5140.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Chandrasekhar, B. M. Pandian, R. Azhakar, J. J. Vittal, R. Cle’rac, Inorg. Chem. 2009, 48, 1148.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Baggio, M. T. Garland, Y. Moreno, O. Pe’na, M. Perec, E. Spodine, J. Chem. Soc., Dalton Trans. 2000, 2061.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. C. Liang, M. C. Hong, W. P. Su, R. Cao, W. J. Zhang, Inorg. Chem. 2001, 40, 4574.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu, J. P. Tuchagues, Inorg. Chem. 2004, 43, 7792.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. C. Xiang, S. M. Hu, T. L. Sheng, J. S. Chen, X. T. Wu, Chem. – Eur. J. 2009, 15, 12496.
| Crossref | GoogleScholarGoogle Scholar |
(h) F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2006, 6, 2432.
| Crossref | GoogleScholarGoogle Scholar |
(i) F. Luo, D. X. Hu, L. Xue, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2007, 7, 851.
| Crossref | GoogleScholarGoogle Scholar |
(j) F. Luo, Y. T. Yang, Y. X. Che, J. M. Zheng, CrystEngComm 2008, 10, 1613.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. T. Yang, F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 3508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWktLvL&md5=2312fd19801300d4779893f2575c3f80CAS |
[13] F. H. Zhao, S. H. Liang, S. Jing, Y. Wang, Y. X. Che, J. M. Zheng, Inorg. Chem. Commun. 2012, 21, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1ymt78%3D&md5=96ee3586e57ae9accc1f2112f212ff84CAS |