Colorimetric Detection of Nitroaromatics Using Organic Photochromic Compounds
George Vamvounis A B C and Nicholas Sandery BA College of Science, Technology and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
C Corresponding author. Email: george.vamvounis@jcu.edu.au
Australian Journal of Chemistry 68(11) 1723-1726 https://doi.org/10.1071/CH15337
Submitted: 9 June 2015 Accepted: 2 July 2015 Published: 5 August 2015
Abstract
An organic photochromic compound is explored as a new portable colorimetric sensor for nitroaromatics. This photochromic compound switches from colourless to pink upon exposure to ultraviolet light. In the presence of nitroaromatic explosive derivatives the photoswitching behaviour of the dithienylethene is suppressed, while a potential false positive (toluene) has little effect. The degree of photoswitching inhibition was determined by comparing the integrated visible absorption with the concentration of the analyte to give the pseudo Stern–Volmer constant (KPSV). The KPSVs measured varied from 12900 (p-nitrotoluene) to 236 M–1 (toluene), which were directly related to the analyte absorption at the excitation wavelength.
References
[1] S. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOrsro%3D&md5=34103b88df7d357e234dc0299d589379CAS | 17385926PubMed |
[2] S. J. Toal, W. C. Trogler, J. Mater. Chem. 2006, 16, 2871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Onur4%3D&md5=07c8721f04116912c2f934992aaf4f3dCAS |
[3] G. Vamvounis, P. E. Shaw, P. L. Burn, J. Mater. Chem. C 2013, 1, 1322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVChu7k%3D&md5=c1639b53359eafe2b316413b3ce087c7CAS |
[4] K. L. Bicker, S. L. Wiskur, J. J. Lavigne, in Chemosensors: Principles, Strategies, and Applications, 1st edn (Eds B. Wang, E. V. Anslyn) 2011, Vol. 1, pp. 275–295 (John Wiley & Sons: New York, NY).
[5] J.-W. Oh, W.-J. Chung, K. Heo, H.-E. Jin, B. Y. Lee, E. Wang, C. Zueger, W. Wong, J. Meyer, C. Kim, S.-Y. Lee, W.-G. Kim, M. Zemla, M. Auer, A. Hexemer, S.-W. Lee, Nat. Commun. 2014, 5, 3043.
| 24448217PubMed |
[6] M. Mohan, D. K. Chand, Anal. Methods 2014, 6, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2ltrnF&md5=0fe850f4de2489977aad071389b3ecf0CAS |
[7] J. Del Eckels, P. J. Nunes, R. L. Simpson, R. E. Whipple, J. C. Carter, J. G. Reynolds (University of California, USA; Lawrence Livermore National Security, LLC). Application: US, 2007, 12 pp, Cont-in-part of US Ser. No. 525,655.
[8] R. A. Evans, T. L. Hanley, M. A. Skidmore, T. P. Davis, G. K. Such, L. H. Yee, G. E. Ball, D. A. Lewis, Nat. Mater. 2005, 4, 249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslSjt7k%3D&md5=6d3d778e427940e706dd443a3f5438dbCAS | 15696171PubMed |
[9] N. Hosono, T. Kajitani, T. Fukushima, K. Ito, S. Sasaki, M. Takata, T. Aida, Science 2010, 330, 808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKht7rP&md5=de9055d570d69d756254f2aa9652aca5CAS | 21051635PubMed |
[10] M. Irie, S. Kobatake, M. Horichi, Science 2001, 291, 1769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslSku7w%3D&md5=b9cd32ba0ade5fc97753f6e72396b599CAS | 11230689PubMed |
[11] G. Vamvounis, D. Gendron, Tetrahedron Lett. 2013, 54, 3785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVagsbg%3D&md5=dbecfb9efe3d3de63c1657a74bd4e8f6CAS |
[12] M. Irie, M. Morimoto, Pure Appl. Chem. 2009, 81, 1655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyru7vO&md5=76a76c98f4b96e7cba1cc9a9e34a7347CAS |
[13] R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, M. R. Hill, Angew. Chem. Int. Ed. 2013, 52, 3695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlahur8%3D&md5=2e765ec83e74d12983d2d3d0e1a2a389CAS |
[14] E. Orgiu, N. Criviller, M. Herder, L. Grubert, M. Pätzel, J. Frisch, E. Pavlica, D. T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht, P. Samorì, Nat. Chem. 2012, 4, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFykt7c%3D&md5=0e816df33e2774cbde9b7c66a2d360c3CAS | 22824901PubMed |
[15] H.-B. Cheng, H.-Y. Zhang, Y. Liu, J. Am. Chem. Soc. 2013, 135, 10190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFaku7c%3D&md5=b41b30d971a2c92dff634402360226c4CAS | 23663074PubMed |
[16] D. Wilson, N. R. Branda, Angew. Chem. Int. Ed. 2012, 51, 5431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlslynurs%3D&md5=8a5d0530cca9d0a98f413a9ff285fb07CAS |
[17] Y. Zou, T. Yi, S. Xiao, F. Li, C. Li, X. Gao, J. Wu, M. Yu, C. Huang, J. Am. Chem. Soc. 2008, 130, 15750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqur7P&md5=68c08f5a731c42210cba41585a3422beCAS |
[18] S. Huang, Z. Li, S. Li, J. Yin, S. Liu, Dyes Pigments 2012, 92, 961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKqurfI&md5=bbc84d9941e69ca65d60cf767f950e5fCAS |
[19] A. K. C. Mengel, B. He, O. S. A. Wenger, J. Org. Chem. 2012, 77, 6545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVemtbnJ&md5=fe2c69d2bfa5ff8224e74dc8a6516e19CAS |
[20] C. Zheng, S. Pu, G. Liu, B. Chen, Y. Dai, Dyes Pigments 2013, 98, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFSksLw%3D&md5=ef1e49fcf864690be4d7fb671f289509CAS |
[21] S.-J. Lim, B.-K. An, S. Y. Park, Macromolecules 2005, 38, 6236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2ltrw%3D&md5=9617087754806ee85d5cc70f8b764e01CAS |
[22] S. Kobatake, T. Yamada, K. Uchida, N. Kato, M. Irie, J. Am. Chem. Soc. 1999, 121, 2380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFarsrg%3D&md5=f199d687ba34db6296187c7a9cc5d99aCAS |