Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Photocatalysis with TiO2 Applied to Organic Synthesis

Norbert Hoffmann
+ Author Affiliations
- Author Affiliations

CNRS, Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, Equipe de Photochimie, UFR Sciences, BP 1039, 51687 Reims, France. Email: norbert.hoffmann@univ-reims.fr




Norbert Hoffmann studied chemistry at the RWTH Aachen University, Germany, and received his Ph.D. degree in 1992 under the supervision of Hans-Dieter Scharf. In 1993, he secured a permanent research position at the CNRS (Chargé de Recherche) in Reims, France. In 2004, he was appointed Research Director in the CNRS. His research interests are in the field of organic photochemistry: electron transfer, photoinduced radical reactions, cycloadditions of aromatic compounds, and application of these reactions to organic synthesis. His other research activities involve the production of fine chemicals from biomass and the synthesis of new organic semiconductor materials for microelectronics.

Australian Journal of Chemistry 68(11) 1621-1639 https://doi.org/10.1071/CH15322
Submitted: 2 June 2015  Accepted: 30 June 2015   Published: 29 July 2015

Abstract

Titanium dioxide is a versatile heterogeneous catalyst. Absorption of light by a TiO2 particle leads to the formation of an electron–hole pair. Electron transfer from or to the particle induces redox reactions. Although mainly applied in the context of environmental chemistry, these processes are also used to selectively transform organic compounds. Oxidations and reductions have been carried out. Applications to the synthesis of heterocycles have been reported. Many C–C bond formation reactions have been performed. Owing to adsorption of the substrates or by different surface modifications, visible light can be used to excite the catalytic system, which generates mild reaction conditions.


References

[1]  (a) N. Hoffmann, Chem. Rev. 2008, 108, 1052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVCgu7Y%3D&md5=fffee6bcce1ec5c5418d9ca1ebd922b7CAS | 18302419PubMed |
      (b) T. Bach, J. P. Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C.-L. Ciana, C. G. Bochet, Chimia 2007, 61, 650.
         | Crossref | GoogleScholarGoogle Scholar |

[2]     (a) CRC Handbook of Organic Photochemistry and Photobiology, 3rd edn (Eds A. Griesbeck, M. Oelgemöller, F. Ghetti) 2012 (CRC Press: Boca Raton, FL).
         (b) Handbook of Synthetic Photochemistry (Eds A. Albini, M. Fagnoni) 2010 (Wiley-VCH: Weinheim).
         (c) Synthetic Organic Photochemistry (Eds A. G. Griesbeck, J. Mattay) 2005 (Marcel Dekker: New York, NY).

[3]     (a) P. Klán, J. Wirz, Photochemistry of Organic Compounds 2009 (Wiley: Chichester).
         (b) N. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules 2010 (University Science Books: Boca Raton, FL).

[4]  (a) N. J. Turro, Angew. Chem. Int. Ed. Engl. 1986, 25, 882.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Olivucci, F. Santoro, Angew. Chem. Int. Ed. 2008, 47, 6322.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. Schapiro, F. Melaccio, E. N. Laricheva, M. Olivucci, Photochem. Photobiol. Sci. 2011, 10, 867.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. E. Zimmerman, Angew. Chem. Int. Ed. Engl. 1969, 8, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Oelgemöller, C. Jung, J. Mattay, Pure Appl. Chem. 2007, 79, 1939.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Protti, D. Dondi, M. Fagnoni, A. Albini, Green Chem. 2009, 11, 239.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Hoffmann, Pure Appl. Chem. 2007, 79, 1949.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Hoffmann, Photochem. Photobiol. Sci. 2012, 11, 1613.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Oelgemöller, J. Chin. Chem. Soc. 2014, 61, 743.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  N. Hoffmann, ChemSusChem 2012, 5, 352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyjsrs%3D&md5=e04dbd215b39598718ae5046720b8976CAS | 22287209PubMed |

[7]  (a) G. Ciamician, Bull. Soc. Chim. Fr. 1908, 3–4, i.
      (b) G. Ciamician, Science 1912, 36, 385.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Albini, M. Fagnoni, ChemSusChem 2008, 1, 63.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Albini, M. Fagnoni, Green Chem. 2004, 6, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) S. Protti, M. Fagnoni, Photochem. Photobiol. Sci. 2009, 8, 1499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleisb3K&md5=e187d01aff9bbd982509674658f381b9CAS | 19862408PubMed |
      (b) P. Esser, B. Pohlmann, H.-D. Scharf, Angew. Chem. Int. Ed. Engl. 1994, 33, 2009.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki, H. Tanibata, T. Murata, Pure Appl. Chem. 2007, 79, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlartbfO&md5=a6c4c7bbc6dc963d9421d522d2f62ccdCAS |
      (b) E. E. Coyle, M. Oelgemöller, Photochem. Photobiol. Sci. 2008, 7, 1313.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Oelgemöller, O. Shvydkiv, Molecules 2011, 16, 7522.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Oelgemöller, Chem. Eng. Technol. 2012, 35, 1144.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Oelgemöller, N. Hoffmann, O. Shvydkiv, Aust. J. Chem. 2014, 67, 337.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Y. Su, N. J. W. Straathof, V. Hessel, T. Noël, Chem. – Eur. J. 2014, 20, 10562.
         | Crossref | GoogleScholarGoogle Scholar |

[10]     (a) Catalysis (Eds M. Beller, A. Renken, R. A. van Santen) 2012 (Wiley-VCH: Weinheim).
         (b) Catalysis from A to Z, Vols 1–4, 4th edn (Eds B. Cornils, W. A. Herrmann, H.-W. Zanthoff, C.-H. Wong) 2013 (Wiley-VCH: Weinheim).

[11]     (a) Selected books on different kinds of catalysis related to organic synthesis: A. Behr, Angewandte homogene Katalyse 2008 (Wiley-VCH: Weinheim).
         (b) Asymmetric Catalysis on Industrial Scale (Eds H. U. Blaser, E. Schmidt) 2004 (Wiley-VCH: Weinheim).
         (c) R. A. Sheldon, I. Arends, U. Hanefeld, Green Chemistry and Catalysis 2007 (Wiley-VCH: Weinheim).
         (d) Comprehensive Enantioselective Organocatalysis, Vols 1–3 (Ed. P. I. Dalko) 2013 (Wiley-VCH: Weinheim).
         (e) D. Astruc, Organometallic Chemistry and Catalysis 2007 (Springer-Verlag, Berlin).
         (f) Microreactors in Organic Synthesis and Catalysis (Ed. T. With) 2008 (Wiley-VCH: Weinheim).
         (g) Metal-Catalysis in Industrial Organic Processes (Eds G. P. Chiusoli, P. M. Maitlis) 2006 (RSC Publishing: Cambridge, UK).
         (h) Applied Homogeneous Catalysis with Organometallic Compounds, 3rd edn (Eds B. Cornils, W. A. Herrmann, M. Beller, R. Paciello) 2015 (Wiley-VCH: Weinheim).
         (i) Enzyme Catalysis in Organic Synthesis (Eds K. Drauz, H. Gröger, O. May) 2012 (Wiley-VCH: Weinheim).

[12]  P. T. Anastas, M. M. Kirchhoff, Acc. Chem. Res. 2002, 35, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOrtLs%3D&md5=96c5f0d669617dae780a0519bd89ab6bCAS | 12234198PubMed |

[13]     (a) Chemical Photocatalysis (Ed. B. König) 2013 (Wiley-VCH: Weinheim).
         (b) Homogeneous Photocatalysis (Ed. M. Chanon) 1997 (John Wiley & Sons: Chichester).

[14]  (a) For some examples of photochemically supported enzyme catalysis, see: D. I. Perez, M. M. Grau, I. W. C. E. Arends, F. Hollmann, Chem. Commun. 2009, 6848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCgtbrO&md5=c77f1bc12314b795af785a95dc844ff4CAS |
      (b) F. Hollmann, A. Taglieber, F. Schulz, M. T. Reetz, Angew. Chem. Int. Ed. 2007, 46, 2903.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) For examples of photochemically supported selective oxidation of carbohydrates, see: A. Gassama, N. Hoffmann, Adv. Synth. Catal. 2008, 350, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1WisL4%3D&md5=0f2797db92ac94daeb03078a99620c44CAS |
      (b) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006, 2018.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Shimizu, S. Onitsuka, H. Egami, T. Katzuki, J. Am. Chem. Soc. 2005, 127, 5396.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) For examples of involving substrate template complexes: C. Müller, T. Bach, Aust. J. Chem. 2008, 61, 557.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem. Int. Ed. 2015, 54, 3872.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Svoboda, B. König, Chem. Rev. 2006, 106, 5413.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Appl. Catal. B 2015, 170–171, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) H. Kisch, Adv. Photochem. 2001, 26, 93.
         | 1:CAS:528:DC%2BD38XitFOlsbs%3D&md5=c2130039c7b1fd6f8916be32c2fe581bCAS |
         (b) H. Kisch, D. Mitoraj, in CRC Handbook of Organic Photochemistry and Photobiology, 3rd edn (Eds A. Griesbeck, M. Oelgemöller, F. Ghetti) 2012, pp. 293–328 (CRC Press: Boca Raton, FL).
      (c) T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2007, 111, 5259.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Hagfeldt, M. Grätzel, Chem. Rev. 1995, 95, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qtbc%3D&md5=50d0f6f290837085199689f639e404f4CAS |

[20]  P. V. Kamat, Chem. Rev. 1993, 93, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvFOnsA%3D%3D&md5=164351de4ee1d0352f36c131b40f9c64CAS |

[21]  J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyjtb7L&md5=22bffac47596c7ab63a80c0ca616584dCAS | 25234429PubMed |

[22]  D. A. Tryk, A. Fujishima, K. Honda, Electrochim. Acta 2000, 45, 2363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFymurw%3D&md5=54be415fd396d7798bea59c5e2c5af18CAS |

[23]  M. A. Fox, Acc. Chem. Res. 1983, 16, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltVCnsbc%3D&md5=cbc5e18ad8aa8aee36b249f33181e156CAS |

[24]  (a) T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, J. Catal. 2001, 203, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlWrsbc%3D&md5=c219e3cc2c2f42aa8949dace3d0b2321CAS |
      (b) D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. Thurnauer, J. Phys. Chem. B 2003, 107, 4545.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Fujishima, K. Honda, Nature 1972, 238, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVykurw%3D&md5=1d4aacd001d223a01e60423d54a2fe36CAS | 12635268PubMed |

[26]  (a) O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 1993, 93, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFektLc%3D&md5=44b2df1dd5c6c9edd3499112b4760baaCAS |
      (b) M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Lacombe, T.-H. Tran-Thi, C. Guillard, J.-M. Herrmann, V. Keller-Spitzer, N. Keller, M.-T. Maurette, P. Pichat, T. Pigot, C. Pulgarin, A.-G. Rincon, D. Robert, Actualité Chim. 2007, 308–309, 79.
      (d) T. Ochiai, A. Fujishima, J. Photochem. Photobiol. Chem. 2012, 13, 247.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. O. Ibhadon, P. Fitzpatrick, Catalysts 2013, 3, 189.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) T. Zhang, X. Wang, X. Zhang, Int. J. Photoenergy 2014, 2014, 607954.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  R. Daghir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 2013, 52, 3581.

[28]  M. Cherevatskaya, B. König, Russ. Chem. Rev. 2014, 83, 183.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature 1979, 277, 637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFSrt7g%3D&md5=e45ccb4c88421127801effce8927acf9CAS |

[30]  H. Michel, Angew. Chem. Int. Ed. 2012, 51, 2516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFajurg%3D&md5=5e4dd675e8fde3b19311c54f79027240CAS |

[31]  (a) M. Anpo, M. Takeuchi, J. Catal. 2003, 216, 505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCmsrs%3D&md5=3285768d4b4707882a1766c6db85c9c5CAS |
      (b) S. Banerjee, S. C. Pillai, P. Falaras, K. E. O’Shea, J. A. Byrne, D. D. Dionysiou, J. Phys. Chem. Lett. 2014, 5, 2543.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  C. D. McTiernan, S. P. Pitre, H. Ismaili, J. C. Scaiano, Adv. Synth. Catal. 2014, 356, 2819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFamu77O&md5=54a059a9b3bf0a98a39c4e39d53e0286CAS |

[33]  M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvFOnsw%3D%3D&md5=2460cf15955b954082c0777ca961084cCAS |

[34]  S. Füldner, R. Mild, H. I. Siegmund, J. A. Schroeder, M. Gruber, B. König, Green Chem. 2010, 12, 400.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Appl. Catal. A 2015, 495, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjt1altb4%3D&md5=2eab8d104e65454e0577bd6b29d299c7CAS |

[36]     (a) R. Cantal, A. Marínez-de la Cruz, in Photocatalytic Semiconductors (Eds A. Hernández-Ramírez, I. Medina-Ramírez) 2015, pp. 41–67 (Springer: Heidelberg).
      (b) R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 2014, 114, 9824.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGktLvO&md5=ad3f8eaa88fbbdc1c504cb1cf9fef4fbCAS | 24162830PubMed |

[38]  A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev. 2002, 102, 3811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wntro%3D&md5=1c578166c02e3ffe4e624a1fe64ecd3fCAS | 12371903PubMed |

[39]  S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue, Y. Sakara, J. Catal. 2009, 266, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeqs7%2FP&md5=acb7470618bd811bc259c5d31e808ba9CAS |

[40]  (a) See for example: O. S. Mohamed, A. M. Gaber, A. A. Abdel-Wahab, J. Photochem. Photobiol. Chem. 2002, 148, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktlaqu70%3D&md5=3e278c9791393c0fc88235f59238cfbaCAS |
      (b) V. Augugliaro, T. Caronna, V. Loddo, G. Marcì, G. Palmisano, L. Palmisano, S. Yurdakal, Chem. – Eur. J. 2008, 14, 4640.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  S. Yurdakal, B. S. Tek, O. Alagöz, V. Augugliaro, V. Loddo, G. Palmisano, L. Palmisano, ACS Sustainable Chem. Eng. 2013, 1, 456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFeksLg%3D&md5=16dcf0ab5afcde5dc6b9bf073d8e7393CAS |

[42]  (a) S. P. Teong, G. Yi, Y. Zhang, Green Chem. 2014, 16, 2015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1yrtLc%3D&md5=40af517c046acf159b2b7a758e57935cCAS |
      (b) B. Saha, M. M. Abu-Omar, Green Chem. 2014, 16, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  (a) X. Tong, Y. Ma, Y. Li, Appl. Catal. A 2010, 385, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgtrjL&md5=1fb88e1012ad50bcccf9df92a53d4771CAS |
         (b) A. S. Amarasekara, in Renewable Polymers (Ed. V. Mittal) 2012, pp. 381–428 (Wiley & Sons: Hoboken, NJ).

[44]  B. Ohtani, S. Tsuru, S. Nishimoto, T. Kagiya, K. Iszawa, J. Org. Chem. 1990, 55, 5551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtFalsrk%3D&md5=c841659022825de694e86ab279845721CAS |

[45]  S. Nishimoto, B. Ohtani, T. Yoshikawa, T. Kagiya, J. Am. Chem. Soc. 1983, 105, 7180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFWrurg%3D&md5=2e33771d5672244d90959e98ba22727cCAS |

[46]  (a) K. V. S. Rao, M. Subrahmanyam, Chem. Lett. 2002, 31, 234.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. Jeena, R. S. Robinson, Beilstein J. Org. Chem. 2009, 5, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  K. V. S. Rao, B. Srinivas, A. R. Prasad, M. Subrahmanyam, Chem. Commun. 2000, 1533.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  K. V. S. Rao, M. Subrahmanyam, Photochem. Photobiol. Sci. 2002, 1, 597.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  K. V. S. Rao, B. Srinivas, A. R. Prasad, M. Subrahmanyam, Chem. Lett. 2002, 31, 236.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  X. Lang, W. Ma, Y. Zhao, C. Chen, H. Ji, J. Zhao, Chem. – Eur. J. 2012, 18, 2624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFahs7w%3D&md5=0c7efb373a3195fd46c8594dd4aa3bf2CAS | 22271403PubMed |

[51]  A. M. Braun, M.-T. Maurette, E. Oliveros, Technologie Photochimique 1986 (Presses Polytechniques Romandes: Lausanne).

[52]  Y. Ogata, Y. Izawa, T. Tsuda, Tetrahedron 1965, 21, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktlylsrc%3D&md5=e747dd809c25f2e1513dd088cbf8f219CAS |

[53]  (a) F. Parrino, A. Ramakrishnan, H. Kisch, Angew. Chem. Int. Ed. 2008, 47, 7107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFais77E&md5=dcb747b1eb49da5356bafb119f8706d6CAS |
      (b) F. Parrino, A. Ramakrishnan, C. Damm, H. Kisch, Chempluschem 2012, 77, 713.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  A. Griesbeck, M. Reckenthäler, J. Uhlig, Photochem. Photobiol. Sci. 2010, 9, 775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslWgs7o%3D&md5=27207c2e91af9f4339acf809e53b02e9CAS | 20393667PubMed |

[55]     (a) M. Zamadar, A. Greer, in Handbook of Synthetic Photochemistry (Eds A. Albini, M. Fagnoni) 2010, pp. 353–386 (Wiley-VCH: Weinheim).
         (b) M. N. Alberti, L. Orfanopoulos, in CRC Handbook of Organic Photochemistry and Photobiology, 3rd edn (Eds A. Griesbeck, M. Oelgemöller, F. Ghetti) 2012, pp. 765–787 (CRC Press: Boca Raton, FL).

[56]  (a) A. G. Griesbeck, J. Steinwascher, M. Reckenthäler, J. Uhlig, Res. Chem. Intermed. 2013, 39, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosValtLY%3D&md5=c2fed927b528fbfdad9e81a604ee80dfCAS |
      (b) A. G. Griesbeck, J. Lex, K. M. Saygin, J. Steinwascher, Chem. Commun. 2000, 2205.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. G. Griesbeck, T. Hundertmark, J. Steinwascher, Tetrahedron Lett. 1996, 37, 8367.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  S. Kohtani, H. Miyabe, in Titanium Dioxide (Ed. J. Brown) 2014, pp. 157–176 (Nova Science Publishers: New York, NY).

[58]  C. Joyce-Pruden, J. K. Pross, Y. Li, J. Org. Chem. 1992, 57, 5087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlSrtLs%3D&md5=974d3c380955dc530a10b9a97cd422d7CAS |

[59]  S. Kohtani, Y. Kamoi, E. Yoshioka, H. Miyabe, Catal. Sci. Technol. 2014, 4, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2gtbg%3D&md5=8a3b69d802bfd3355c4d6d08c99e844cCAS |

[60]  Y. Matsushita, S. Kumada, K. Wakabayashi, K. Sakeda, T. Ichimura, Chem. Lett. 2006, 35, 410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVCmu78%3D&md5=4ea7523937ac5253821121efc0199620CAS |

[61]  L. R. Baker, G. Kennedy, M. Van Spronsen, A. Hervier, X. Cai, S. Chen, L.-W. Wang, G. A. Somorjai, J. Am. Chem. Soc. 2012, 134, 14208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGiu7nK&md5=914cf33a5ff10f374ba84947c0603214CAS | 22871058PubMed |

[62]  (a) C. M. Cai, T. Zhang, R. Kumar, C. E. Wyman, J. Chem. Technol. Biotechnol. 2014, 89, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CrsrjM&md5=004d32deb42e1f1fa1eebcad4c6eb6c0CAS |
      (b) F. Martel, B. Estrine, R. Plantier-Royon, N. Hoffmann, C. Portella, Top. Curr. Chem. 2010, 294, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  L. B. Manfredi, G. Rivero, Adv. Chem. Res. 2012, 16, 45.
         | 1:CAS:528:DC%2BC3sXitVCjtLw%3D&md5=229c5fed14f13910913d40fe6081c350CAS |

[64]  J. W. Park, M. J. Hong, K. K. Park, Bull. Korean Chem. Soc. 2001, 22, 1213.
         | 1:CAS:528:DC%2BD3MXovVCku7g%3D&md5=5698af119f8aece7d7b0ce70ed1dbb66CAS |

[65]  H. Wang, J. Yan, W. Chang, Z. Zhang, Catal. Commun. 2009, 10, 989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyru7g%3D&md5=146af06f55ab16ed680cd65611ac6c65CAS |

[66]  K. Selvam, B. Krishnakumar, R. Velmurugan, M. Swaminathan, Catal. Commun. 2009, 11, 280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2mtLzP&md5=319fc05ba8dafcd278862d7a09486366CAS |

[67]  H. Wang, R. E. Partch, Y. Li, J. Org. Chem. 1997, 62, 5222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVSqs78%3D&md5=bf8eb371e49c58d24540c1e2b1744c9dCAS |

[68]  (a) J. L. Ferry, W. H. Glaze, J. Phys. Chem. B 1998, 102, 2239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtleku7w%3D&md5=d7e5183f037eb39f5e734fbfe4407e66CAS |
      (b) J. L. Ferry, W. H. Glaze, Langmuir 1998, 14, 3551.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Shiraishi, Y. Togawa, D. Tsukamoto, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 2475.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  F. Mahdavi, T. C. Bruton, Y. Li, J. Org. Chem. 1993, 58, 744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXotVeiuw%3D%3D&md5=92d7b61691a3205fe77b08d958b01cfcCAS |

[70]  K. H. Park, H. S. Joo, K. I. Ahn, K. Jun, Tetrahedron Lett. 1995, 36, 5943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1SntLY%3D&md5=442aa74a8e94c3ba67810566aecb4217CAS |

[71]  K. Selvam, M. Swaminthan, RSC Adv. 2012, 2, 2848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Crtrs%3D&md5=5bd8d37fe6e4dd4ca25ed09cdb60c5b0CAS |

[72]  D. W. Manley, L. Buzetti, A. MacKessack-Leitch, J. C. Walton, Molecules 2014, 19, 15324.
         | Crossref | GoogleScholarGoogle Scholar | 25255248PubMed |

[73]  (a) F. Minisci, Synthesis 1973, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXotlCmsQ%3D%3D&md5=a2ddf978758ae58d294644a9681f9d3eCAS |
      (b) F. Minisci, Top. Curr. Chem. 1976, 62, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  C. Punta, F. Minisci, Trends Heterocycl. Chem. 2008, 13, 1.
         | 1:CAS:528:DC%2BC3cXnslyksLc%3D&md5=1ef2942f2706d078b11798ee2c5f1881CAS |

[75]  J. Tauber, D. Imbri, T. Opatz, Molecules 2014, 19, 16190.
         | Crossref | GoogleScholarGoogle Scholar | 25310148PubMed |

[76]  M. A. J. Duncton, MedChemComm 2011, 2, 1135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeju77E&md5=2589d1997083c42d4b21c89c82a2eb6bCAS |

[77]  (a) For selected examples, see: H. Nozaki, M. Kato, R. Noyori, M. Kawanisi, Tetrahedron Lett. 1967, 8, 4259.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. Minisci, E. Vismara, F. Fontana, M. C. Nogueira Barbosa, Tetrahedron Lett. 1989, 30, 4569.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Helgen, C. G. Bochet, Heterocycles 2006, 67, 797.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Cheng, Z. Qing, S. Liu, W. Liu, H. Xie, J. Zeng, Tetrahedron Lett. 2014, 55, 6647.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  T. Caronna, C. Gambarotti, L. Palmisano, C. Punta, F. Recupero, Chem. Commun. 2003, 2350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVOns78%3D&md5=0c679de8c728ce4c19488256b01a14f1CAS |

[79]  For the properties and the chemical reactivity of acyl radicals, see: C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFSksrg%3D&md5=41a9b5829b2f1d7828725cbd9821266cCAS | 11849018PubMed |

[80]  (a) D. D. M. Wayner, K. B. Clark, A. Rauk, D. Yu, D. A. Armstrong, J. Am. Chem. Soc. 1997, 119, 8925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVKksLs%3D&md5=886ca78b8e3929bba205e67f9c497c55CAS |
      (b) G. W. Dombrowski, J. P. Dinnocenzo, S. Farid, J. L. Goodman, I. R. Gould, J. Org. Chem. 1999, 64, 427.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Lalevée, X. Allonas, S. Genet, J.-P. Fouassier, J. Am. Chem. Soc. 2003, 125, 9377.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  J. Lalevée, X. Allonas, J.-P. Fouassier, J. Org. Chem. 2005, 70, 814.
         | Crossref | GoogleScholarGoogle Scholar | 15675837PubMed |

[82]  H. Fischer, L. Radom, Angew. Chem. Int. Ed. 2001, 40, 1340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyrsr4%3D&md5=643b8dbeea959838101d82bede2265e8CAS |

[83]  (a) D. Lefort, J. Fossey, J. Sorba, New J. Chem. 1992, 16, 219.
         | 1:CAS:528:DyaK38XitlGjsLg%3D&md5=7e54e692d6babb6d47a2dc4ae0100ad7CAS |
      (b) B. Giese, W. Mehl, Tetrahedron Lett. 1991, 32, 4275.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. M. Tedder, Angew. Chem. Int. Ed. Engl. 1982, 21, 401.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  B. Roberts, Chem. Soc. Rev. 1999, 28, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1SmsQ%3D%3D&md5=ae48770b3f7dea244069fe329c46b259CAS |

[85]  T. Caronna, C. Gambarotti, L. Palmisano, C. Punta, F. Recupero, J. Photochem. Photobiol. Chem. 2005, 171, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFOltr4%3D&md5=e3220a4e8f8cb319474ee6eb13b4bb22CAS |

[86]  (a) J. Hu, J. Wang, T. H. Nguyen, N. Zheng, Beilstein J. Org. Chem. 2013, 9, 1977.
         | Crossref | GoogleScholarGoogle Scholar | 24204409PubMed |
      (b) P. Renaud, L. Giraud, Synthesis 1996, 913.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  (a) A. G. Griesbeck, N. Hoffmann, K.-D. Warzecha, Acc. Chem. Res. 2007, 40, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFOntA%3D%3D&md5=90ab50e646f357449c8310f263eeed56CAS | 17256976PubMed |
      (b) N. Hoffmann, S. Bertrand, S. Marinković, J. Pesch, Pure Appl. Chem. 2006, 78, 2227.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  N. Hoffmann, J. Phys. Org. Chem. 2015, 28, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1Snsbo%3D&md5=266ee25505429b081bf067cd1501eef5CAS |

[89]  (a) S. Marinković, N. Hoffmann, Chem. Commun. 2001, 1576.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Marinković, N. Hoffmann, Int. J. Photoenergy 2003, 5, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  L. Cermenati, C. Richter, A. Albini, Chem. Commun. 1998, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislSit7c%3D&md5=f64ca895eb3c2aca1d00dd9532a88361CAS |

[91]  (a) S. Bertrand, N. Hoffmann, J.-P. Pete, V. Bulach, Chem. Commun. 1999, 2291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFaju7w%3D&md5=00caaf2a6839d87e2f8f780e2a01cdf3CAS |
      (b) S. Bertrand, N. Hoffmann, S. Humbel, J.-P. Pete, J. Org. Chem. 2000, 65, 8690.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Marinković, C. Brulé, N. Hoffmann, E. Prost, J.-M. Nuzillard, V. Bulach, J. Org. Chem. 2004, 69, 1646.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  R. Jahjah, A. Gassama, F. Dumur, S. Marinković, S. Richert, S. Landgraf, A. Lebrun, C. Cadiou, P. Sellès, N. Hoffmann, J. Org. Chem. 2011, 76, 7104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSrtLzF&md5=3a292d2d1dd4de9ee244fec3ec73587aCAS | 21806039PubMed |

[93]  L. Cermenati, D. Dondi, M. Fagnoni, A. Albini, Tetrahedron 2003, 59, 6409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFyntbo%3D&md5=f034dd5a7cee761d4a7b89f30f3e06f3CAS |

[94]  S. Marinković, N. Hoffmann, Eur. J. Org. Chem. 2004, 3102.
         | Crossref | GoogleScholarGoogle Scholar |

[95]  (a) D. W. Manley, R. T. McBurney, P. Miller, R. F. Howe, S. Rhydderch, J. C. Walton, J. Am. Chem. Soc. 2012, 134, 13580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGjsr%2FN&md5=158ca8d608a52b153f73c9976b46c7bfCAS | 22867432PubMed |
      (b) D. W. Manley, R. T. McBurney, P. Miller, J. C. Walton, A. Mills, C. O’Rourke, J. Org. Chem. 2014, 79, 1386.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  For a recent study, see: J. C. Walton, Org. Biomol. Chem. 2014, 12, 7983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSiu7jF&md5=c23eb85d3714fbffa92377e865331725CAS | 25179567PubMed |

[97]  D. W. Manley, A. Mills, C. O’Rourke, A. M. Z. Slawin, J. C. Walton, Chem. – Eur. J. 2014, 20, 5492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Wls7c%3D&md5=59781cdbf2082170c8b0350498d079a2CAS | 24652772PubMed |

[98]  D. W. Manley, J. C. Walton, Org. Lett. 2014, 16, 5394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslahsLzO&md5=40fdb76428d07d8091b3dc8cd606ab5fCAS | 25290736PubMed |

[99]  (a) B. Ohtani, H. Osaki, S. Nishimoto, T. Kagiya, J. Am. Chem. Soc. 1986, 108, 308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1yjtro%3D&md5=cb0e0bd97ece9d1cf658a8bbe67a50fbCAS |
      (b) B. Ohtani, Y. Goto, S. Nishimoto, T. Inui, J. Chem. Soc., Faraday Trans. 1996, 92, 4291.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Shiraishi, Y. Takeda, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Chem. Commun. 2011, 7863.
         | Crossref | GoogleScholarGoogle Scholar |

[100]  (a) U. Wille, Chem. Rev. 2013, 113, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WgsbvJ&md5=a030d8440380e36d938ba1e696ee0674CAS | 23121090PubMed |
         (b) Radicals in Organic Synthesis, Vols 1 and 2 (Eds M. Sibi, P. Renaud) 2001 (Wiley-VCH: Weinheim).

[101]  M. Rueping, J. Zoller, D. C. Fabry, K. Poscharny, R. M. Koenigs, T. E. Weirich, J. Mayer, Chem. – Eur. J. 2012, 18, 3478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyjtbk%3D&md5=db9b3561f6cb1d8756acc9e9b4dadf1dCAS | 22314870PubMed |

[102]  M. Cherevatskaya, M. Neumann, S. Füldner, C. Harlander, S. Kümmel, S. Dankesreiter, A. Pfitzner, K. Zeitler, B. König, Angew. Chem. Int. Ed. 2012, 51, 4062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWqurc%3D&md5=1a038d3f0e5663f5e62cf6b5e23ba868CAS |

[103]  (a) I. Ugi, Angew. Chem. Int. Ed. Engl. 1962, 1, 8.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) I. Ugi, Pure Appl. Chem. 2001, 73, 187.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Dömling, Chem. Rev. 2006, 106, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[104]  C. Vila, M. Rueping, Green Chem. 2013, 15, 2056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCltbfO&md5=14306ff5262e0f2caf799c58f507192bCAS |

[105]  (a) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgsw%3D%3D&md5=22cd8ba6a9e9f48ab31ee7dabe46d7d8CAS | 18197348PubMed |
      (b) P. Jeschke, Pest Manag. Sci. 2010, 66, 10.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  (a) C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVyju74%3D&md5=78defa8c55ef190880c0a5d6ba9a5801CAS |
      (b) M. Stolar, T. Baumgartner, Phys. Chem. Chem. Phys. 2013, 15, 9007.
         | Crossref | GoogleScholarGoogle Scholar |

[107]  W. R. Dolbier, Chem. Rev. 1996, 96, 1557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFOqsb4%3D&md5=41813f43012867c3474e8da120a38ce1CAS | 11848804PubMed |

[108]  X. Lin, Z. Weng, Dalton Trans. 2015, 2021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaktL3P&md5=3d255527f2801f8d311e812efc30b8ceCAS | 25515695PubMed |

[109]  M. Iizuka, M. Yoshida, J. Fluor. Chem. 2009, 130, 926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGgu7rP&md5=64209add11c77a957bb8c09944e51161CAS |

[110]  M. Baar, S. Blechert, Chem. – Eur. J. 2015, 21, 526.and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGgtLvE&md5=db5d26f06d541bb045232f26ed96007eCAS | 25413695PubMed |

[111]     (a) N. Hoffmann, in Handbook of Synthetic Photochemistry (Eds A. Albini, M. Fagnoni) 2010, pp. 137–169 (Wiley-VCH: Weinheim).
         (b) J. P. Hehn, C. Müller, T. Bach, in Handbook of Synthetic Photochemistry (Eds A. Albini, M. Fagnoni) 2010, pp. 171–215 (Wiley-VCH: Weinheim).

[112]  A. Ledwith, Acc. Chem. Res. 1972, 5, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xhtl2ksbg%3D&md5=48e50f88bd82bec1753a3c9bb0e05705CAS |

[113]  H. Maeda, M. Yamamoto, H. Nakagawa, K. Mizuno, Chin. Chem. Lett. 2010, 21, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFKjtbY%3D&md5=6900d031e3ebd9004feeb9ecc54a9a0aCAS |

[114]  H. Maeda, H. Miyamoto, K. Mizuno, Chem. Lett. 2004, 33, 462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKhurk%3D&md5=9d5aff4382982549a201741f6c5f6cebCAS |

[115]  H. Maeda, H. Nakagawa, K. Mizuno, Photochem. Photobiol. Sci. 2003, 2, 1056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWku7w%3D&md5=67c676bccd18593419656fd35d3c2a96CAS | 14690214PubMed |