Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterisation of High Fullerene Content Polymers and Their Use in Organic Photovoltaic Devices

Sean M. Clark A , Jonathan A. Campbell A and David A. Lewis A B
+ Author Affiliations
- Author Affiliations

A Flinders Centre for NanoScale Science and Technology, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

B Corresponding author. Email: david.lewis@flinders.edu.au

Australian Journal of Chemistry 68(11) 1767-1772 https://doi.org/10.1071/CH15284
Submitted: 18 May 2015  Accepted: 25 June 2015   Published: 7 August 2015

Abstract

Narrow dispersity polymers with a high tethered fullerene content were synthesised by first polymerising poly(chloromethyl styrene) using reversible addition–fragmentation chain transfer (RAFT) polymerisation and subsequently functionalising them with pristine fullerene. The polymers comprised 52 % by weight fullerene, corresponding to approximately one fullerene per monomer in the polymer with a different morphology to poly(3-hexyl thiophene) (P3HT) : phenyl-C61-butyric acid methyl ester (PCBM) systems. Bulk heterojunctions formed from the polymer tethered fullerene (PTF) with P3HT yielded functioning organic photovoltaic devices with power conversion efficiencies ranging from 0.0030 to 0.22 % as the PTF was increased from 1 : 0.8 to 1 : 1.3. Process optimisation resulted in a maximum efficiency of 0.4 %.


References

[1]  M. S. Dresselhaus, G. Dresselhaus, Annu. Rev. Mater. Sci. 1995, 25, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlKlu7c%3D&md5=c4cdc276f69475786f550905122cd671CAS |

[2]  D. J. Clarke, J. G. Matisons, G. P. Simon, M. Samoc, A. Samoc, Appl. Organomet. Chem. 2010, 24, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVajtLg%3D&md5=2d5859cd3d07a5a86cfcfdc772b2d155CAS |

[3]  J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKlu7zF&md5=30405eba8da8b9c6a07d8d46375ab087CAS | 20715063PubMed |

[4]  C. J. Brabec, M. Heeney, I. McCulloch, J. Nelson, Chem. Soc. Rev. 2011, 40, 1185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kisb0%3D&md5=85b420f865043cd558e2c53559d224f7CAS | 21082082PubMed |

[5]  R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, R. H. Friend, Nano Lett. 2010, 10, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKktLY%3D&md5=5e79c143fba9dddccab74ffd5ae9353eCAS | 20121212PubMed |

[6]  C. Tao, M. Aljada, P. E. Shaw, K. H. Lee, H. Cavaye, M. N. Balfour, R. J. Borthwick, M. James, P. L. Burn, I. R. Gentle, P. Meredith, Adv. Energy Mater. 2013, 3, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKhsbY%3D&md5=278d7dfcd5b3b322759de36a17c797d0CAS |

[7]  M. Dante, C. Yang, B. Walker, F. Wudl, T.-Q. Nguyen, Adv. Mater. 2010, 22, 1835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Ggu7s%3D&md5=da60493f266ef7067b34c233fa48c47aCAS | 20512957PubMed |

[8]  B. de Boer, U. Stalmach, P. F. van Hutten, C. Melzer, V. V. Krasnikov, G. Hadziioannou, Polymer 2001, 42, 9097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCjs7w%3D&md5=eaa19ca90908bf1d330477ca5fed9e17CAS |

[9]  C. J. Hawker, Macromolecules 1994, 27, 4836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkvVCitL0%3D&md5=22cd23fc9a508bee5ef9e18227df50e6CAS |

[10]  M. H. van der Veen, B. de Boer, U. Stalmach, K. I. van de Wetering, G. Hadziioannou, Macromolecules 2004, 37, 3673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1GjtLk%3D&md5=25ea9f0e99d30271eb420de46bec2736CAS |

[11]  J. U. Lee, A. Cirpan, T. Emrick, T. P. Russell, W. H. Jo, J. Mater. Chem. 2009, 19, 1483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1eqsbY%3D&md5=44133190fa9e3aa913b92809d32c40c4CAS |

[12]  U. Stalmach, B. de Boer, C. Videlot, P. F. van Hutten, G. Hadziioannou, J. Am. Chem. Soc. 2000, 122, 5464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFKjs7w%3D&md5=37e5a0f7fd97a194183360c57ae69f95CAS |

[13]  R. C. Hiorns, E. Cloutet, E. Ibarboure, A. Khoukh, H. Bejbouji, L. Vignau, H. Cramail, Macromolecules 2010, 43, 6033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1CnurY%3D&md5=7fb438eb7623805b8d97b5658499c96cCAS |

[14]  Y. C. Tseng, S. B. Darling, Polymers 2010, 2, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFGgu7s%3D&md5=2525bf14c33483c6ff367008113cc2a5CAS |

[15]  P. D. Topham, A. J. Parnell, R. C. Hiorns, J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVClsLo%3D&md5=6b291bee6c7e78e348312cad0fb33de7CAS |

[16]  F. Giacalone, N. Martín, Chem. Rev. 2006, 106, 5136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCgsrjJ&md5=46d8447667a0cb16bf3e336bd7052a09CAS | 17165684PubMed |

[17]  J. Li, B. C. Benicewicz, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Chsr4%3D&md5=8bda88ec9bda560221fc78c62c681abdCAS |

[18]  A. Nourdine, L. Perrin, R. d. Bettignies, S. Guillerez, L. Flandin, N. Alberola, Polymer 2011, 52, 6066.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOqsbbO&md5=80c053b83944f2e97552a679c32ac247CAS |

[19]  P. J. Roth, D. Kessler, R. Zentel, P. Theato, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvV2jsL8%3D&md5=1a15294b3c326b54af7a7fdf4df0a757CAS |

[20]  D. Adam, The Synthesis and Characterisation of Halogen and Nitro Phenyl Azide Derivatives as Highly Energetic Materials 2001, Ph.D. thesis, Ludwig Maximilian University, Munich, Germany.

[21]  E. Lieber, C. N. R. Rao, T. S. Chao, C. W. W. Hoffman, Anal. Chem. 1957, 29, 916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXntVShsg%3D%3D&md5=01e0dc1577a0a8407bddfb38a4175bc2CAS |

[22]  J.-S. You, J.-O. Kweon, S.-C. Kang, S.-T. Noh, Macromol. Res. 2010, 18, 1226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtb%2FI&md5=79e332b295a4dba0151aa899fddf3dbeCAS |

[23]  H. Ajie, M. M. Alvarez, S. J. Anz, R. D. Beck, F. Diederich, K. Fostiropoulos, D. R. Huffman, W. Kraetschmer, Y. Rubin, K. E. Schriver, D. Sensharma, R. L. Whetten, J. Phys. Chem. 1990, 94, 8630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSlt7c%3D&md5=9dfc6324c0c41b36a98fef2d1ce89b5dCAS |