Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Study of Vertical and Lateral Charge Transport Properties of DPP-Based Polymer/PC61BM Films Using Space Charge Limited Current (SCLC) and Field Effect Transistor Methods and their Effects on Photovoltaic Characteristics

Leanne Murphy A B , Bin Sun A B , Wei Hong A , Hany Aziz B C D and Yuning Li A B D
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.

B Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.

C Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.

D Corresponding authors. Email: h2aziz@uwaterloo.ca; yuning.li@uwaterloo.ca

Australian Journal of Chemistry 68(11) 1741-1749 https://doi.org/10.1071/CH15283
Submitted: 18 May 2015  Accepted: 13 June 2015   Published: 7 July 2015

Abstract

We studied the vertical and lateral charge transport characteristics of a diketopyrrolopyrrole polymer donor (D)–PC61BM acceptor (A) system by measuring the space charge limited current (SCLC) mobility and field-effect mobility respectively. It was found that with an increase in annealing temperature, the SCLC hole mobility decreased for the pure polymer (PDBFBT) but increased for the PDBFBT:PC61BM blends, which could be explained by changes in the crystallinity and crystal orientation (edge-on versus face-on). The pure PDBFBT and most blend films showed the maximum field-effect hole mobility (µh) when annealed at 100°C, which then declined as the annealing temperature was further increased. Surprisingly, the D/A = 1/1 blend films annealed at high temperatures exhibited an abrupt increase in the field-effect µh. This unusual phenomenon was interpreted by the antiplasticization effect of PC61BM, which promoted the molecular organization of the polymer. The effect of annealing on the carrier mobility was further correlated with the performance of inverted organic solar cell devices with the PDBFBT:PC61BM blend (D/A = 1/3). Thermal annealing at high temperatures (>100°C) was found to obstruct electron transport and cause the device performance to significantly deteriorate.


References

[1]  A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 2010, 110, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFOitQ%3D%3D&md5=fad358e3ea1f02ae53ef088e63718651CAS | 20070114PubMed |

[2]  H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2rtLs%3D&md5=1fd3aed06ac008d1ceebf4a6add7b4a2CAS | 20396828PubMed |

[3]  A. Facchetti, Chem. Mater. 2011, 23, 733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Srsb3K&md5=98e2da02b4e23621aea05e2bf0562a98CAS |

[4]  L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Chem. Soc. Rev. 2013, 42, 8612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmurnP&md5=2d3997494502c5523e866932394215ebCAS | 24018860PubMed |

[5]  H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVylsrk%3D&md5=792dbdc0ce640b781a62d95bb030f4a3CAS | 24443057PubMed |

[6]  K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater. 2010, 22, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWrtbc%3D&md5=1994a16e31bd2f3d7e47c5608d701e00CAS | 20217752PubMed |

[7]  Y. Li, Acc. Chem. Res. 2012, 45, 723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyrtr0%3D&md5=817b7e719dd0e03c21e26ffb789d2807CAS | 22288572PubMed |

[8]  C. J. Takacs, Y. Sun, G. C. Welch, L. A. Perez, X. Liu, W. Wen, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2012, 134, 16597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmtrnM&md5=e5b181b0948a5c8a621eff12ad0d6e30CAS | 22950622PubMed |

[9]  C. D. Dimitrakopoulos, D. J. Mascaro, IBM J. Res. Dev. 2001, 45, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVGmurg%3D&md5=4907e507e937ec1861470ceef8e5c222CAS |

[10]  B. A. Gregg, M. C. Hanna, J. Appl. Phys. 2003, 93, 3605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvV2qsLo%3D&md5=8172e4f23e6aba600a9bbc37ed231ef4CAS |

[11]  H. Hoppe, N. S. Sariciftci, J. Mater. Res. 2004, 19, 1924.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslSqtrg%3D&md5=e9baf2b9f1d86199b33cfacf62e3feb4CAS |

[12]  J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, B. S. Ong, Sci. Rep. 2012, 2, 754.
         | Crossref | GoogleScholarGoogle Scholar | 23082244PubMed |

[13]  I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, Y. H. Kim, J. Am. Chem. Soc. 2013, 135, 14896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrtLjL&md5=f6424ece4ff2e26b1624b07e15fdb4edCAS | 24053786PubMed |

[14]  G. Kim, S. J. Kang, G. K. Dutta, Y. K. Han, T. J. Shin, Y. Y. Noh, C. Yang, J. Am. Chem. Soc. 2014, 136, 9477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVGgs74%3D&md5=d83d4e576b88727a3408ee0a572bef85CAS | 24915140PubMed |

[15]  B. Sun, W. Hong, Z. Yan, H. Aziz, Y. Li, Adv. Mater. 2014, 26, 2636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt12rsr8%3D&md5=4ab8caa6e27804ebf6406b29c231462bCAS | 24623497PubMed |

[16]  H.-J. Yun, S.-J. Kang, Y. Xu, S. O. Kim, Y.-H. Kim, Y.-Y. Noh, S.-K. Kwon, Adv. Mater. 2014, 26, 7300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWnsbfL&md5=a301b22894c3b683d80867ed418f9094CAS | 25250838PubMed |

[17]  H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. Shakya Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 2011, 133, 3272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFWrtrY%3D&md5=e99a163625e59aebd0d36724fa0065dbCAS | 21332134PubMed |

[18]  J. C. Bijleveld, B. P. Karsten, S. G. J. Mathijssen, M. M. Wienk, D. M. de Leeuw, R. A. J. Janssen, J. Mater. Chem. 2011, 21, 1600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFalsw%3D%3D&md5=56850d9491df370bf6a48eccf32dd71bCAS |

[19]  R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I. McCulloch, Chem. Mater. 2011, 23, 768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSku7rP&md5=6584cac33d2ecdf2cb7ef8491d3a3d48CAS |

[20]  M. Shahid, R. S. Ashraf, Z. Huang, A. J. Kronemeijer, T. McCarthy-Ward, I. McCulloch, J. R. Durrant, H. Sirringhaus, M. Heeney, J. Mater. Chem. 2012, 22, 12817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGnurs%3D&md5=10ebaa505b8a81c05ef145d09fb074d3CAS |

[21]  P. Sonar, S. P. Singh, Y. Li, Z. E. Ooi, T. j. Ha, I. Wong, M. S. Soh, A. Dodabalapur, Energy Environ. Sci. 2011, 4, 2288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVClsb4%3D&md5=2f26e5fe6ed6bc117e5ac79c6393c5f0CAS |

[22]  Y. Sun, S.-C. Chien, H.-L. Yip, Y. Zhang, K.-S. Chen, D. F. Zeigler, F.-C. Chen, B. Lin, A. K. Y. Jen, J. Mater. Chem. 2011, 21, 13247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKhtbjI&md5=18390ed1d995e817795a352dac112dd2CAS |

[23]  Y. Li, P. Sonar, S. P. Singh, Z. E. Ooi, E. S. H. Lek, M. Q. Y. Loh, Phys. Chem. Chem. Phys. 2012, 14, 7162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVeit7g%3D&md5=89e948e0c500a0b6684ff5722680a92bCAS |

[24]  I. McCulloch, R. S. Ashraf, L. Biniek, H. Bronstein, C. Combe, J. E. Donaghey, D. I. James, C. B. Nielsen, B. C. Schroeder, W. Zhang, Acc. Chem. Res. 2012, 45, 714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSqtbw%3D&md5=52f62c4039b65c8c09ea251a6b4364dbCAS | 22280366PubMed |

[25]  Y. Li, P. Sonar, L. Murphy, W. Hong, Energy Environ. Sci. 2013, 6, 1684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFyrsbc%3D&md5=3e0c8319a6dc0635d5fffa4c98ec1144CAS |

[26]  S. Subramaniyan, F. S. Kim, G. Ren, H. Li, S. A. Jenekhe, Macromolecules 2012, 45, 9029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wlsb%2FO&md5=5b78bce3f728e2cc6ffb62f5e8c4d711CAS |

[27]  P. Sonar, S. P. Singh, E. L. Williams, Y. Li, M. S. Soh, A. Dodabalapur, J. Mater. Chem. 2012, 22, 4425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Shurg%3D&md5=ad55b02aac64ffb70809f03075bdd7b9CAS |

[28]  J. Mei, K. R. Graham, R. Stalder, S. P. Tiwari, H. Cheun, J. Shim, M. Yoshio, C. Nuckolls, B. Kippelen, R. K. Castellano, J. R. Reynolds, Chem. Mater. 2011, 23, 2285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1GktLs%3D&md5=05d569e803385c245e3475db6101e498CAS |

[29]  K.-H. Ong, S.-L. Lim, H.-S. Tan, H.-K. Wong, J. Li, Z. Ma, L. C. H. Moh, S.-H. Lim, J. C. de Mello, Z.-K. Chen, Adv. Mater. 2011, 23, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFCltb4%3D&md5=e68f1c240c63d0aea4f42d6db3e771afCAS | 21400606PubMed |

[30]  X. Zhan, Z. a. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S. R. Marder, J. Am. Chem. Soc. 2007, 129, 7246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVClsLs%3D&md5=c914433ad7208590553ab65a5773b444CAS | 17508752PubMed |

[31]  S. Tiwari, N. C. Greenham, Opt. Quantum Electron. 2009, 41, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOrsLnK&md5=dc0db14bf8040f7caba231805a34b2afCAS |

[32]  E. von Hauff, J. Parisi, V. Dyakonov, Thin Solid Films 2006, 511–512, 506.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  P. N. Murgatroyd, J. Phys. D: Appl. Phys. 1970, 3, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett. 1996, 68, 3308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtl2ktLs%3D&md5=cc5c6d7a71ab953944ae9c6292852dedCAS |

[35]  K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Goh, Y. Liu, M. D. McGehee, Adv. Funct. Mater. 2005, 15, 1927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlers7fI&md5=d3fd162965d85ededf68c015cd22a83eCAS |

[36]  L. Murphy, W. Hong, H. Aziz, Y. Li, Org. Electron. 2013, 14, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Snsb3O&md5=d17509f862633026835e13abe46a2652CAS |

[37]  C. Tanase, E. J. Meijer, P. W. M. Blom, D. M. de Leeuw, Phys. Rev. Lett. 2003, 91, 216601.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3sngtlakuw%3D%3D&md5=95f5025a055f9f09fbc04c6bec305135CAS | 14683323PubMed |

[38]  Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ltb3M&md5=356e7a374f173dbdb22fa8e0802c0703CAS | 19785455PubMed |

[39]  H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, K. Müllen, J. Am. Chem. Soc. 2011, 133, 2605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOnsbo%3D&md5=88f2e53e8bff6d3bce2e1964aea5a0c0CAS | 21291267PubMed |

[40]  H. J. Chen, Y. L. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. T. Liu, Y. Q. Liu, Adv. Mater. 2012, 24, 4618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1eht7g%3D&md5=36df7e01c7370aacb42a00e65f63538aCAS |

[41]  P. E. Hopkinson, P. A. Staniec, A. J. Pearson, A. D. F. Dunbar, T. Wang, A. J. Ryan, R. A. L. Jones, D. G. Lidzey, A. M. Donald, Macromolecules 2011, 44, 2908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Gjtrs%3D&md5=3cea2486186820d78f961ccb9c80bafbCAS |

[42]  Z. Yi, X. Sun, Y. Zhao, Y. Guo, X. Chen, J. Qin, G. Yu, Y. Liu, Chem. Mater. 2012, 24, 4350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2ktLzP&md5=c6b6793ee8baf16fb350520e7f42bab8CAS |

[43]  J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejtbnN&md5=1c407378f6b47cff7bd311f61ce52cdeCAS | 22122218PubMed |

[44]  Y. Li, P. Sonar, S. P. Singh, W. Zeng, M. S. Soh, J. Mater. Chem. 2011, 21, 10829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1yrtLo%3D&md5=45944c2ee3a744df39c10adacd264e66CAS |

[45]  E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney, Z. Bao, Adv. Funct. Mater. 2010, 20, 3519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaks77P&md5=786ca76e4b848c3c53747550116c82c2CAS |

[46]  T. M. Clarke, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. R. Durrant, Adv. Funct. Mater. 2008, 18, 4029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Chsg%3D%3D&md5=648ee37c3b173bb28d84d67bd7face25CAS |

[47]  R. A. Marsh, J. M. Hodgkiss, S. Albert-Seifried, R. H. Friend, Nano Lett. 2010, 10, 923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKktLY%3D&md5=5e79c143fba9dddccab74ffd5ae9353eCAS | 20121212PubMed |

[48]  L. Murphy, W. Hong, H. Aziz, Y. Li, Sol. Energy Mater. Sol. Cells 2013, 114, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yktLc%3D&md5=4c9af07f058496cdbba97bdfce6bdf3cCAS |

[49]  B. Sun, W. Hong, H. Aziz, Y. N. Li, J. Mater. Chem. 2012, 22, 18950.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ensLbI&md5=46a083c7bb8836bed87a9d968d4be5abCAS |

[50]  B. Amrouche, A. Guessoum, M. Belhamel, Appl. Energy 2012, 91, 395.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvF2qsrg%3D&md5=50b2fa982e7467b1a0ec9185562de030CAS |

[52]  X. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline, M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts, D. A. Fischer, M. F. Toney, J. Am. Chem. Soc. 2011, 133, 15073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWjsrrJ&md5=159d13545195ccb28f61ee7b54b3f6edCAS | 21815633PubMed |

[53]  W. J. Jackson, J. R. Caldwell, J. Appl. Polym. Sci. 1967, 11, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Cqt7c%3D&md5=92365f3067e3e6bad559e9d43d30f4a1CAS |

[54]  Y. Maeda, D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 1987, 25, 1005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlGisbg%3D&md5=94b41a5ff56cced506f90d007aa0a1f9CAS |

[55]  B. Sun, W. Hong, H. Aziz, N. M. Abukhdeir, Y. Li, J. Mater. Chem. C 2013, 1, 4423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKiurvJ&md5=5ba5926537e00e5820554c5c3bf644eaCAS |

[56]  P. G. Karagiannidis, S. Kassavetis, C. Pitsalidis, S. Logothetidis, Thin Solid Films 2011, 519, 4105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFKnsb0%3D&md5=cc53a1d19818c331b067699018751e9dCAS |

[57]  R. Hamilton, C. G. Shuttle, B. O’Regan, T. C. Hammant, J. Nelson, J. R. Durrant, J. Phys. Chem. Lett. 2010, 1, 1432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKrs70%3D&md5=e6caada6bcc1593da54d01eef35921e2CAS |

[58]  W. Cai, X. Gong, Y. Cao, Sol. Energy Mater. Sol. Cells 2010, 94, 114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WjtrbJ&md5=079b83247009506576e6e2e7e609bf7bCAS |

[59]  N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, M. L. Chabinyc, Adv. Energy Mater. 2011, 1, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivF2lu7k%3D&md5=77105e74298a9c9caffa14fa1b84a99dCAS |

[60]  G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 2005, 98, 043704.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  A. Tamayo, T. Kent, M. Tantitiwat, M. A. Dante, J. Rogers, T.-Q. Nguyen, Energy Environ. Sci. 2009, 2, 1180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFajtrw%3D&md5=58cc23fb8752c979509dab85f57a2f8dCAS |

[62]  Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Appl. Phys. Lett. 2005, 86, 063502.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOrtLfJ&md5=251b4abb0c05377ce2add5d8377cb1baCAS |

[64]  A. Swinnen, I. Haeldermans, M. vande Ven, J. D’Haen, G. Vanhoyland, S. Aresu, M. D’Olieslaeger, J. Manca, Adv. Funct. Mater. 2006, 16, 760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCmu78%3D&md5=1357e18134c2fb94eabe16c2900e0ceeCAS |

[65]  J. M. Warman, M. P. de Haas, T. D. Anthopoulos, D. M. de Leeuw, Adv. Mater. 2006, 18, 2294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSlurnN&md5=eab63c5bac8550d2f6e6e739e6587b34CAS |

[66]  P. G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, S. Logothetidis, Mater. Chem. Phys. 2011, 129, 1207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFClsrw%3D&md5=538516590839f1fbb01212ed898c771fCAS |

[67]  J. Jo, S.-S. Kim, S.-I. Na, B.-K. Yu, D.-Y. Kim, Adv. Funct. Mater. 2009, 19, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFWgu78%3D&md5=8723e021af9fac1c71998a785af5a27eCAS |

[68]  S. Lilliu, T. Agostinelli, E. Pires, M. Hampton, J. Nelson, J. E. Macdonald, Macromolecules 2011, 44, 2725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Gjs7g%3D&md5=bfa90ecba39da61dd7439fcf1cee0e52CAS |

[69]  B. Conings, S. Bertho, K. Vandewal, A. Senes, J. D’Haen, J. Manca, R. A. J. Janssen, Appl. Phys. Lett. 2010, 96, 163301.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  Y. Zhang, H.-L. Yip, O. Acton, S. K. Hau, F. Huang, A. K. Y. Jen, Chem. Mater. 2009, 21, 2598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2ksb4%3D&md5=df447c46df800e0eb0c982dbe3edebd5CAS |

[71]  M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nat. Mater. 2008, 7, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGltLc%3D&md5=f0edb12aed90c3f849930c43591a8557CAS | 18204451PubMed |

[72]  K. Maturová, S. S. van Bavel, M. M. Wienk, R. A. J. Janssen, M. Kemerink, Nano Lett. 2009, 9, 3032.
         | Crossref | GoogleScholarGoogle Scholar | 19719114PubMed |

[73]  G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ShsbnO&md5=d97400173515eec7521c1cfca7da81dcCAS |

[74]  S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, M. A. Alam, J. Appl. Phys. 2010, 108, 124509.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  C. M. Proctor, T.-Q. Nguyen, Appl. Phys. Lett. 2015, 106, 083301.
         | Crossref | GoogleScholarGoogle Scholar |