New Red-Emitting Phosphor La2Zr3(MoO4)9:Eu3+ and the Influence of Host Absorption on its Luminescence Efficiency
Florian Baur A and Thomas Jüstel A BA Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstrasse 39, D-48565 Steinfurt, Germany.
B Coresponding author. Email: tj@fh-muenster.de
Australian Journal of Chemistry 68(11) 1727-1734 https://doi.org/10.1071/CH15268
Submitted: 13 May 2015 Accepted: 10 August 2015 Published: 2 September 2015
Abstract
This work investigates the optical properties of Eu3+-activated La2Zr3(MoO4)9. A series of solid solutions with Eu3+ concentrations in the range of 0–100 % were prepared by conventional high temperature solid-state synthesis. An unusual change in the lattice parameters was observed. The phosphor exhibits a broad absorption band in the UV spectral region, and measurements on the non-doped material at 100 K were conducted to elucidate the nature of the absorption band. As demonstrated, Mo6+ charge transfer absorption negatively influences the luminescence efficiency of the phosphor. The temperature-dependent emission spectra revealed that the emission intensity exhibits a bi-sigmoidal temperature dependence. This behaviour results from competing absorption via Mo6+ charge transfer processes, which strongly decrease the efficiency of the phosphor. For application purposes, it is therefore advisable to choose materials that do not exhibit host absorption in the spectral range where excitation is expected.
References
[1] E. F. Schubert, J. K. Kim, Science 2005, 308, 1274.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Ciurc%3D&md5=12d2108612045ffa431074425e7d20f6CAS | 15919985PubMed |
[2] S. C. Allen, A. J. Steckl, Appl. Phys. Lett. 2008, 92, 143309.
| Crossref | GoogleScholarGoogle Scholar |
[3] LEDs for Lighting Applications (Ed. P. Mottier) 2009 (ISTE Ltd: London).
[4] Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, J. Phys. D: Appl. Phys. 2010, 43, 354002.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Born, T. Jüstel, Chem. Unserer Zeit 2006, 40, 294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aktbfK&md5=c7aca512c4632931679257c1864ca1b7CAS |
[6] A. A. Setlur, Electrochem. Soc. Interface 2009, 18, 32.
| 1:CAS:528:DC%2BC3cXktFOhsg%3D%3D&md5=3e5e43db10c3f40a67e2549d3b9b1e93CAS |
[7] R. Mueller-Mach, G. O. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Jüstel, P. Schmidt, Phys. Status Solidi 2005, 202, 1727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlCmsrc%3D&md5=9b110ce20dafb34890e7afab423c2778CAS |
[8] F. Baur, F. Glocker, T. Jüstel, J. Mater. Chem. C 2015, 3, 2054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVSn&md5=29748385edbc511690dcf62d46522f0aCAS |
[9] F. Baur, A. Katelnikovas, S. Sakirzanovas, R. Petry, T. Jüstel, Z. Naturforsch., B: J. Chem. Sci. 2014, 69, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1enu7o%3D&md5=cce25109894bbe3702d5e0f7262351e0CAS |
[10] WinXPOW 2011 (STOE & Cie GmbH: Darmstadt).
[11] Z. G. Bazarova, E. Y. Badmaeva, S. F. Solodovnikov, Y. L. Tushinova, B. G. Bazarov, E. S. Zolotova, Russ. J. Inorg. Chem. 2004, 49, 284.
[12] L. Vegard, Z. Phys. 1921, 5, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3MXhsV2luw%3D%3D&md5=48a153dab30357631dc194fc749685c7CAS |
[13] J.-Y. Chen, Q.-R. Zhang, T.-Y. Liu, Z.-X. Shao, C.-Y. Pu, Chin. Phys. Lett. 2007, 24, 1660.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntl2qs7k%3D&md5=8af855845ccaee4c023aa790d4ba84adCAS |
[14] W. Zhang, J. Sun, X. Wang, G. Shen, D. Shen, CrystEngComm 2012, 14, 3490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGltr4%3D&md5=8a92b1e4df75cab0f7091be5b2a987bcCAS |
[15] L.-W. Shi, Y.-F. Duan, X.-Q. Yang, L.-X. Qin, Chin. Phys. Lett. 2010, 27, 096201.
| Crossref | GoogleScholarGoogle Scholar |
[16] G. Blasse, B. C. Grabmaier, Luminescent Materials 1994 (Springer: Berlin).
[17] L. Shi, H. J. Seo, Opt. Express 2011, 19, 7147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2mtL4%3D&md5=bf3c4c1b17365727a8ad230eefa443dbCAS | 21503028PubMed |
[18] G. Blasse, G. Bernardi, D. Ijdo, J. Plaisier, J. Alloys Compd. 1995, 217, 29.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFSgtb4%3D&md5=430a990ec35ad9a2c22731ac500e094bCAS |
[19] M. Wiegel, G. Blasse, J. Solid State Chem. 1992, 99, 388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1ahurY%3D&md5=9258cb770abfb09b9f99a59f38b6bab0CAS |
[20] R. U. E. ‘t Lam, G. Blasse, J. Chem. Phys. 1979, 71, 3549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmtF2ltb4%3D&md5=6ad7fe656a79bfcd7f8f210eaf18e61dCAS |
[21] G. Blasse, G. J. Dirksen, J. Phys. Chem. Solids 1987, 48, 591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksVylurY%3D&md5=76142b5c302669b1c882d5570d098cf9CAS |
[22] J. A. Groenink, C. Hakfoort, G. Blasse, Phys. Status Solidi 1979, 54, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsVyrt7s%3D&md5=93dd35316875a8adbc47c0a5714785f2CAS |
[23] X. Liu, L. Li, H. M. Noh, B. K. Moon, B. C. Choi, J. H. Jeong, Dalton Trans. 2014, 43, 8814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotl2jsrs%3D&md5=bcd948f0f64815b490dcde9872eb677fCAS | 24781975PubMed |
[24] E. Würzberg, J. Chem. Phys. 1976, 64, 1254.
| Crossref | GoogleScholarGoogle Scholar |
[25] E. Pavitra, G. Seeta Rama Raju, W. Park, J. S. Yu, New J. Chem. 2014, 38, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2iu7jK&md5=672285b9f476bba82a0426f45b218f14CAS |
[26] E. Álvarez, M. E. Zayas, J. Alvarado-Rivera, F. Félix-Domínguez, R. P. Duarte-Zamorano, U. Caldiño, J. Lumin. 2014, 153, 198.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Shang, D. Geng, X. Kang, D. Yang, Y. Zhang, J. Lin, Inorg. Chem. 2012, 51, 11106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWks7bF&md5=f6e169130ab6c0ed677b92e1c36d1119CAS | 23020114PubMed |
[28] Z. Hao, J. Zhang, X. Zhang, X. Wang, Opt. Mater. 2011, 33, 355.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ens7%2FK&md5=15a1277d5337337051722ab66be0aa8fCAS |
[29] M. Müller, T. Jüstel, Dalton Trans. 2015, 44, 10368.
| Crossref | GoogleScholarGoogle Scholar | 25969954PubMed |
[30] Z. Xia, J. Zhuang, A. Meijerink, X. Jing, Dalton Trans. 2013, 42, 6327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVChtLo%3D&md5=3bba3bf0b5acbd6a65aff173b2108521CAS | 23385482PubMed |