Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A New Protocol for Total Synthesis of Natural Product Frutinone A and Its Derivatives

Kang Lei A B , Dong-Wei Sun A B , Yuan-Yuan Tao A B and Xiao-Hua Xu A B C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Number 94, Weijin Road, Nankai District, Tianjin 300071, China.

B Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.

C Corresponding author. Email: xiaohuaxu@nankai.edu.cn

Australian Journal of Chemistry 69(1) 98-106 https://doi.org/10.1071/CH15267
Submitted: 12 May 2015  Accepted: 16 June 2015   Published: 17 July 2015

Abstract

A new protocol for total synthesis of natural product frutinone A was accomplished in three steps by using inexpensive 2′-hydroxyacetophenone as starting material. The key intermediate 3-(2-chlorobenzoyl)-4-hydroxycoumarin was synthesized in one pot through Baker–Venkataraman rearrangement of 2-acetylphenyl 2-chlorobenzoate followed by introduction of methyl chloroformate under basic conditions. Then, base-promoted intramolecular nucleophilic substitution reaction of 3-(2-chlorobenzoyl)-4-hydroxycoumarin provided frutinone A in excellent yield. The synthetic route features good yield, transition metal-free and mild reaction conditions, and high tolerance for functionality, thereby allowing easy substitutions around the frutinone A core.


References

[1]  C. Bergeron, A. Marston, J. Wolfender, S. Mavi, C. Rogers, K. Hosterttmann, Phytochem. Anal. 1997, 8, 32.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlOgt74%3D&md5=1552c5ed8343f1cc0f5c8316ee089603CAS |

[2]  E. R. Di Paolo, M. O. Hamburger, H. Stoeckli-Evans, C. Rogers, K. Hostettmann, Helv. Chim. Acta 1989, 72, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpsFGisQ%3D%3D&md5=b7b0316431f6357461e6268d8931480bCAS |

[3]  S. Kobayashi, T. Miyase, H. Noguchi, J. Nat. Prod. 2002, 65, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Grs7g%3D&md5=758fed7d0ca7eb15ece7910e5ee54cf3CAS | 11908972PubMed |

[4]  R. S. Thelingwani, K. Dhansay, P. Smith, K. Chibale, C. M. Masimirembwa, Xenobiotica 2012, 42, 989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWhs73E&md5=d77f59b5d8f93df559771ff3343bf04cCAS | 22533317PubMed |

[5]  M. D. Dean, K. B. Hindley, S. Small, J. Chem. Soc., Perkin Trans. 1 1972, 16, 2007.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  F. Eiden, H. D. Schweiger, Synthesis 1974, 1974, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  I. M. EI-Deen, H. K. Ibraham, Egypt. J. Chem. 2007, 50, 403.

[8]  M. Yoshida, K. Saito, Y. Fujino, T. Doi, Tetrahedron 2014, 70, 3452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFWjt7g%3D&md5=e85cbb652d683e7795fcfefe4703e2b7CAS |

[9]  Y. Shin, C. Yoo, Y. Moon, Y. Lee, S. Hong, Chem. – Asian J. 2015, 10, 878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWgt7o%3D&md5=43917d1163ccc0c20424b210efbe9d41CAS | 25252104PubMed |

[10]  B. Liu, L. G. Xie, X. H. Xu, Y. H. Li, Chin. J. Org. Chem. 2011, 31, 2067.
         | 1:CAS:528:DC%2BC38Xhs1yns74%3D&md5=91d8224ac7be49394ad39c454d76cdddCAS |

[11]  Y. X. Liao, P. Y. Kuo, D. Y. Yang, Tetrahedron Lett. 2003, 44, 1599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFWltA%3D%3D&md5=0ff6ef1221d60f7a814338a850d323f0CAS |

[12]  P. Y. Kuo, R. R. Chuang, D. Y. Yang, Mol. Diversity 2009, 13, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2hsb0%3D&md5=83ec49ca81f10b394c66ca79f2889e62CAS |

[13]  A. K. Ganguly, P. K. Mahata, D. Biswas, Tetrahedron Lett. 2006, 47, 1347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFKhug%3D%3D&md5=341f06577f04a88122a1e0bae1e669afCAS |

[14]  D. Ameen, T. J. Snape, Synthesis 2015, 47, 141.
         | 1:CAS:528:DC%2BC2cXitVejurrL&md5=ed75b550bbfdb505d37accbc77313843CAS |

[15]  A. Fougerousse, E. Gonzlez, R. Brouillard, J. Org. Chem. 2000, 65, 583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVels74%3D&md5=6202c5cc33722fb89a41149dfaa1f967CAS | 10813976PubMed |

[16]  Y. J. Yu, Y. Hu, W. Y. Shao, J. N. Huang, Y. L. Zuo, Y. P. Huo, L. K. An, J. Dun, X. Z. Bu, Eur. J. Org. Chem. 2011, 2011, 4551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVSjur4%3D&md5=4ee60f68927536f571a447243769ca18CAS |

[17]  M. M. Krayushkin, K. S. Levchenko, V. N. Yarovenko, New J. Chem. 2009, 33, 2267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWks7zO&md5=92b545dcfd844674802b3c8de8055b0fCAS |