Perovskite Solar Cells Based on Nanocrystalline SnO2 Material with Extremely Small Particle Sizes
Hongxia Wang A B , Md Abu Sayeed A and Teng Wang AA School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Qld 4001, Australia.
B Corresponding author. Email: hx.wang@qut.edu.au
Australian Journal of Chemistry 68(11) 1783-1788 https://doi.org/10.1071/CH15245
Submitted: 5 May 2015 Accepted: 30 June 2015 Published: 16 July 2015
Abstract
In this work, we report the synthesis of SnO2 nanocrystalline material and its application in perovskite solar cells. The material has been characterised comprehensively by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and N2 adsorption analysis. The results have revealed that the average particle size of the SnO2 material was less than 3 nm, resulting in a large specific surface area of 173.9 m2 g–1. The investigation of the material in perovskite solar cells as electron-transport layer showed that pure SnO2 material did not favour the photovoltaic performance of the device. The best solar cell obtained with one layer of SnO2 film (22 nm) showed an energy conversion efficiency of 2.19 % under an illumination intensity of 100 mW cm–2. Beyond this thickness, the performance of the solar cells decreased significantly with increasing thickness of the SnO2 film due to a dramatic decrease in the photocurrent density. Nevertheless, it has been found that SnO2 material containing a small amount of metal tin (1.3 %) significantly improved the performance of the solar cell to 8.7 %. The possible reason for this phenomenon has been discussed based on the consideration of the energy band alignment of materials in the perovskite solar cells.
References
[1] (a) M. L. Cai, V. T. Tiong, T. Hreid, J. Bell, H. X. Wang, J. Mater. Chem. A 2015, 3, 2784.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFahsrzP&md5=cf45c970b3cef476abbff9135e25a462CAS |
(b) H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Kazim, M. K. Nazeeruddin, M. Gratzel, S. Ahmad, Angew. Chem., Int. Ed. 2014, 53, 2812.
| Crossref | GoogleScholarGoogle Scholar |
[2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2iurc%3D&md5=ab6071dd0fc8b9fec279d28093f96c1cCAS | 19366264PubMed |
[3] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, J.-E. Moser, Nat. Photonics 2014, 8, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1aktQ%3D%3D&md5=b26e2102ab47d820a064e55f3c8665acCAS |
[4] E. Hendry, M. Koeberg, B. O’Regan, M. Bonn, Nano Lett. 2006, 6, 755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVyntr4%3D&md5=40c0a300d363a7beee5ef815cddc1dfeCAS | 16608278PubMed |
[5] Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Pietsch, R. Schewski, M. Albrecht, A. Kwasniewski, S. Ganschow, D. Schulz, C. Guguschev, R. Bertram, M. Bickermann, R. Fornari, Phys. Status Solidi A 2014, 211, 66.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SktbvO&md5=f30fd71579c81ae8f62b3ba585f251c3CAS |
[6] P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, L. M. Herz, ACS Nano 2011, 5, 5158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOmt7k%3D&md5=ec3ded8203a58a2d2b1e3ecb3d093f3eCAS | 21595483PubMed |
[7] M. A. Hossain, J. R. Jennings, Z. Y. Koh, Q. Wang, ACS Nano 2011, 5, 3172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKhtb0%3D&md5=c62a40ee30208029eea3ca200c832b15CAS | 21384799PubMed |
[8] (a) H. X. Wang, M. N. Liu, C. Yan, J. Bell, Beilstein J. Nanotechnol. 2012, 3, 378.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Chang, R. Ahmed, H. X. Wang, H. W. Liu, R. Z. Li, P. Wang, E. R. Waclawik, J. Phys. Chem. C 2013, 117, 13836.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Ahmed, L. Zhao, A. J. Mozer, G. Will, J. Bell, H. X. Wang, J. Phys. Chem. C 2015, 119, 2297.
[9] V. T. Tiong, Y. Zhang, J. Bell, H. X. Wang, CrystEngComm 2014, 16, 4306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslWlsbg%3D&md5=94cb4eb4a6fcee9ef72ff1feb87cabbfCAS |
[10] P. B. Balbuena, K. E. Gubbins, Langmuir 1993, 9, 1801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlCqsLo%3D&md5=ccfa9a7a3d8536ec36bf8080c40d252eCAS |
[11] See p. 12 in: F. R. J. Rouquerol, P. Llewellyn, G. Maurin, K. S. W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications 2014 (Academic Press: New York, NY).
[12] P. J. Cameron, L. M. Peter, S. Hore, J. Phys. Chem. B 2005, 109, 930.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCrurzM&md5=383de64052df3166aa7232d1ff95b002CAS | 16866461PubMed |
[13] I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 1994, 98, 4133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFOiur8%3D&md5=6e286567af1c03aa2efff30ac6d4201dCAS |
[14] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlyltrc%3D&md5=1b1407a1a24f2cb4e3170af3ce1ae356CAS |