Microreactor-Mediated Benzylic Bromination in Concentrated Solar Radiation
Young Joon Kim A , Myung Jin Jeong A , Ji Eun Kim A , Insik In B C and Chan Pil Park A CA Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 305-764, Korea.
B Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Korea.
C Corresponding authors. Email: in1@ut.ac.kr; chan@cnu.ac.kr
Australian Journal of Chemistry 68(11) 1653-1656 https://doi.org/10.1071/CH15238
Submitted: 1 May 2015 Accepted: 5 June 2015 Published: 30 June 2015
Abstract
Sunlight-induced bromination of benzylic compounds was conducted in a capillary microreactor, resulting in mono-brominated compounds with yields of up to 94 %. These reactions can be considered to be eco-friendly since they were carried out without an artificial light source or additional temperature control. In addition, up to 257.9 mmol could be produced daily using cost-effective molecular bromine, which leads to potential improvement of industrial processes.
References
[1] (a) P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice 2000 (Oxford University Press: New York, NY).(b) A. Matlack, Introduction to Green Chemistry 2010 (CRC Press: Boca Raton, FL).
(c) S. Y. Tang, R. A. Bourne, R. L. Smith, M. Poliakoff, Green Chem. 2008, 10, 268.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Protti, M. Fagnoni, Photochem. Photobiol. Sci. 2009, 8, 1499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleisb3K&md5=e187d01aff9bbd982509674658f381b9CAS | 19862408PubMed |
(b) M. Oelgemöller, C. Jung, J. Mattay, Pure Appl. Chem. 2007, 79, 1939.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Esser, B. Pohlmann, H.-D. Scharf, Angew. Chem. Int. Ed. Engl. 1994, 33, 2009.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) F. De Leon, S. Kalagara, A. A. Navarro, S. Mito, Tetrahedron Lett. 2013, 54, 3147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvV2hs70%3D&md5=b4967b527e3e6c0b19a8b64956844dc5CAS |
(b) J. Benites, D. Rios, P. Díaz, J. A. Valderrama, Tetrahedron Lett. 2011, 52, 609.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Schiel, M. Oelgemöller, J. Ortner, J. Mattay, Green Chem. 2001, 3, 224.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. Josse, J. De Winter, O. Altintas, P. Dubois, C. Barner‐Kowollik, P. Gerbaux, O. Coulembier, Macromol. Chem. Phys. 2015, 216, 1227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsF2ls7w%3D&md5=e51832b191f06bff82b06bf0c406ed04CAS |
[5] B. Pohlmann, H.-D. Scharf, U. Jarolimek, P. Mauermann, Sol. Energy 1997, 61, 159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslOjtrg%3D&md5=0667ea59f589667e2e12c24004b07766CAS |
[6] (a) M. Oelgemöller, N. Healy, L. de Oliveira, C. Jung, J. Mattay, Green Chem. 2006, 8, 831.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Oelgemöller, C. Jung, J. Ortner, J. Mattay, E. Zimmermann, Green Chem. 2005, 7, 35.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. Deshpande, B. Gadilohar, Y. Shinde, D. Pinjari, A. Pandit, G. Shankarling, Sol. Energy 2015, 113, 332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslakt74%3D&md5=3fd2e12014ae80a063f82adf139e1406CAS |
(b) M. Dinda, S. Chakraborty, S. Samanta, C. Bhatt, S. Maiti, S. Roy, Y. Kadam, P. K. Ghosh, Environ. Sci. Technol. 2013, 47, 10535.
[8] R. C. Larock, Comprehensive Organic Transformations: A Guide to Functional Group Preparations 1999 (Wiley-VCH: New York, NY).
[9] (a) J. Snell, A. Weissberger, Org. Synth. 1955, 3, 788.
(b) E. F. Stephenson, Org. Synth. 1963, 4, 984.
[10] C. Djerassi, Chem. Rev. 1948, 43, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXksVyq&md5=df29a1e728083c4fd791162bf5bd4b55CAS | 18887958PubMed |
[11] (a) A. Amati, G. Dosualdo, L. Zhao, A. Bravo, F. Fontana, F. Minisci, H.-R. Bjørsvik, Org. Process Res. Dev. 1998, 2, 261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVKrsbw%3D&md5=e21fdccd0f8c8ee8144b72f18757aaeaCAS |
(b) R. Mestres, J. Palenzuela, Green Chem. 2002, 4, 314.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. Kikuchi, S. Sakaguchi, Y. Ishii, J. Org. Chem. 1998, 63, 6023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gtbg%3D&md5=a4c342c10d6aab0d00f6162f03b3b547CAS | 11672208PubMed |
[13] (a) D. Cantillo, O. de Frutos, J. A. Rincon, C. Mateos, C. O. Kappe, J. Org. Chem. 2014, 79, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVajtbrM&md5=b1fd1c9b0bc199cad7572200efb5df24CAS | 24261546PubMed |
(b) Y. Manabe, Y. Kitawaki, M. Nagasaki, K. Fukase, H. Matsubara, Y. Hino, T. Fukuyama, I. Ryu, Chem. – Eur. J. 2014, 20, 12750.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) Selected examples: R. A. Bourne, X. Han, M. Poliakoff, M. W. George, Angew. Chem. Int. Ed. 2009, 48, 5322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2hs7k%3D&md5=af160b63cc275142063979b68d0f4ad4CAS |
(b) T. Carofiglio, P. Donnola, M. Maggini, M. Rossetto, E. Rossi, Adv. Synth. Catal. 2008, 350, 2815.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Jähnisch, U. Dingerdissen, Chem. Eng. Technol. 2005, 28, 426.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. C. Wootton, R. Fortt, A. J. de Mello, Org. Process Res. Dev. 2002, 6, 187.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. E. Coyle, M. Oelgemöller, Photochem. Photobiol. Sci. 2008, 7, 1313.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Gilmore, P. H. Seeberger, Chem. Rec. 2014, 14, 410.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) Selected examples: H. Kim, A. Nagaki, J. Yoshida, Nat. Commun. 2011, 2, 264.
| Crossref | GoogleScholarGoogle Scholar | 21468016PubMed |
(b) J. H. Park, C. Y. Park, H. S. Song, Y. H. Huh, G. H. Kim, C. P. Park, Org. Lett. 2013, 15, 752.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. W. Seo, H. S. Song, J. H. Song, G.-H. Kim, I. In, C. P. Park, Tetrahedron Lett. 2015, 56, 2795.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Ebrahimi, E. Kolehmainen, P. Oinas, V. Hietapelto, I. Turunen, Chem. Eng. J. 2011, 167, 713.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. A. Maurya, C. P. Park, J. H. Lee, D.-P. Kim, Angew. Chem. Int. Ed. 2011, 50, 5952.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. O’Brien, I. R. Baxendale, S. V. Ley, Org. Lett. 2010, 12, 1596.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. P. L. Gemoets, V. Hessel, T. Noël, Org. Lett. 2014, 16, 5800.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) C. Y. Park, Y. J. Kim, H. J. Lim, J. H. Park, M. J. Kim, S. W. Seo, C. P. Park, RSC Adv. 2015, 5, 4233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2mtbvI&md5=5a32ace6bbb9dcb15b0aa4442d0dccb4CAS |
(b) C. Y. Park, J. H. Park, H. J. Lim, G.-S. Hwang, C. P. Park, Bull. Korean Chem. Soc. 2014, 35, 983.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. P. Park, R. A. Maurya, J. H. Lee, D.-P. Kim, Lab Chip 2011, 11, 1941.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) A. Yavorskyy, O. Shvydkiv, N. Hoffmann, K. Nolan, M. Oelgemöller, Org. Lett. 2012, 14, 4342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wqu7zO&md5=99b2d642ea10662a5c59e66eb2a2e35aCAS | 22905680PubMed |
(b) N. M. Reis, G. L. Puma, Chem. Commun. 2015, 51, 8414.
| Crossref | GoogleScholarGoogle Scholar |