Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterization of a New Group of Exo-Coordinating O2N2-Donor Macrocycles

Bahram Ghanbari A C , Barzin Safarkoopayeh (Agheli) A , Reze Kia A and Paul R. Raithby B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Sharif University of Technology, PO Box 11155-3516, Tehran, Iran.

B Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.

C Corresponding author. Email: ghanbari@sharif.edu

Australian Journal of Chemistry 69(3) 273-278 https://doi.org/10.1071/CH15204
Submitted: 22 April 2015  Accepted: 21 July 2015   Published: 31 August 2015

Abstract

The reaction of 15–18 membered benzodiazacrown ethers with salicylaldehyde afforded n-membered O2N2-donor macrocyclic ligands mounted with 1,3-diazacyclohexane subrings (14) in high yields. The products were characterized by FT-IR, 1H, 13C NMR spectroscopy, elemental analyses, and single crystal X-ray studies. The solid state structures revealed strong intramolecular hydrogen bonding between the pendant phenolic group and the tertiary nitrogen of the corresponding macroring.


References

[1]  J. D. Chartres, L. F. Lindoy, G. V. Meehan, Coord. Chem. Rev. 2001, 216–217, 249.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  L. F. Lindoy, G. V. Meehan, I. M. Vasilescu, H. J. Kim, J.-E. Lee, S. S. Lee, Coord. Chem. Rev. 2010, 254, 1713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOiurg%3D&md5=cd4aa9d8613593381c9671d2dff5519fCAS |

[3]  E. Kent Barefield, Coord. Chem. Rev. 2010, 254, 1607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOitbs%3D&md5=26db4742b174447cefcb30045d4adfe9CAS |

[4]  S. Park, S. Y. Lee, K.-M. Park, S. S. Lee, Acc. Chem. Res. 2012, 45, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cqt73N&md5=e400dc023497f8dd654c0dcaae01c4e1CAS | 21967328PubMed |

[5]  Z. Q. Pan, Q. H. Luo, C. Y. Duan, M. C. Shen, Polyhedron 2001, 20, 2945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVansr8%3D&md5=eb566967d749ca4a0d83d8104b534acdCAS |

[6]  H. Adams, N. A. Bailey, P. Bertrand, S. R. Collinson, D. E. Fenton, S. J. Kitchen, J. Chem. Soc., Dalton Trans. 1996, 1181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVymt74%3D&md5=1c6aca702822e16b45ff5b5de515c6fcCAS |

[7]  D. A. Rockcliffe, A. E. Martell, J. H. Reibenspies, J. Chem. Soc., Dalton Trans. 1996, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVOisg%3D%3D&md5=ca0896dd9c49b59e75fef84511813f22CAS |

[8]  C. Y. Shen, Z. Q. Pan, Y. N. Wang, Q. H. Luo, Synth. React. Inorg. Met.-Org. Chem. 2003, 33, 1263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslSitbk%3D&md5=53cca79362fb0fff9fdb5406a00cce2fCAS |

[9]  K. Mochizuki, Y. Ohgami, A. Mochizuki, K. Hayano, Inorg. Chem. Commun. 2009, 12, 1250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2isr%2FL&md5=cd57f90f82f4c9f70e5be89c1824546aCAS |

[10]  T. Axenrod, J. Sun, K. K. Das, P. R. Dave, F. Forohar, M. Kaselji, N. J. Trivedi, R. D. Gilardi, J. L. Flippen-Andersen, J. Org. Chem. 2000, 65, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVaitA%3D%3D&md5=5c192833e7ea8db0eec95eacbd2f63e2CAS | 10814072PubMed |

[11]  S. Kagabu, M. Hibi, K. Nishimura, Biosci. Biotechnol. Biochem. 2005, 69, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFelsLw%3D&md5=0aaf1f7df434891b74e87b85f9cf16b5CAS | 15849408PubMed |

[12]  B. Ghanbari, M. Alishah Aratboni, Fullerenes Nanotubes, Carbon Nanonstruct. 2013, 21, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOksrzF&md5=8244bbf46baddda95021abd343056484CAS |

[13]  B. Ghanbari, N. Mahlooji, Fullerenes Nanotubes, Carbon Nanonstruct. 2014, 22, 322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvFOmtbg%3D&md5=9f26ae18b6411d3e4857116c8cdc6a36CAS |

[14]  B. Ghanbari, P. Gholamnezhad, M. Hatami, J. Therm. Anal. Calorim. 2014, 118, 1631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVGis7%2FO&md5=7de621b26743718c5e616df97a838b61CAS |

[15]  B. Ghanbari, P. Gholamnezhad, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 139, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1CqtQ%3D%3D&md5=6dcf0e4b7e815f72037f24270220b078CAS | 25574645PubMed |

[16]  L. G. Armstrong, P. G. Grimsley, L. F. Lindoy, H. C. Lip, V. A. Norris, R. J. Smith, Inorg. Chem. 1978, 17, 2350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltl2mu7c%3D&md5=c1c4eae543d35586f8de346219f07a82CAS |

[17]  P. G. Grimsley, L. F. Lindoy, H. C. Lip, R. J. Smith, J. T. Baker, Aust. J. Chem. 1977, 30, 2095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXovFKnsg%3D%3D&md5=d29f56ae13b452470a9022feca1f0838CAS |

[18]  X. X. Zhang, A. V. Bordunov, X. Kou, N. K. Dalley, R. M. Izatt, J. H. Mangum, D. Li, J. S. Bradshaw, P. C. Hellier, Inorg. Chem. 1997, 36, 2586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFyhsbw%3D&md5=0fe0ac85f4f3d706713d435478eb63cfCAS |

[19]  X.-K. Ji, L. F. Lindoy, B. W. Skelton, A. H. White, J Inclusion Phenom. Macrocyclic Chem. 2011, 71, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGqt7nE&md5=be513b65b067533be35b60debea0b8e6CAS |

[20]  L. Babosa, L. F. Lindoy, B. W. Skelton, A. H. White, Polyhedron 2007, 26, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSksQ%3D%3D&md5=0c725ca13479f9d6054a227d21e16e1cCAS |