Syntheses and Structures of Homodinuclear (Na–Na) and Heterodinuclear (Cu–Na, Cu–K) Metal Complexes
Rui Jia A , Ting Gao A B C , Ruoxi Chen A , Yu Yang A , Po Gao A , Yan Wang A and Pengfei Yan A CA Key Laboratory of Functional Inorganic Material Chemistry (MOE), Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
B Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Heilongjiang Province, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
C Corresponding authors. Email: gaotingmail@sina.cn; yanpf@vip.sina.com
Australian Journal of Chemistry 69(1) 20-26 https://doi.org/10.1071/CH15200
Submitted: 19 April 2015 Accepted: 25 May 2015 Published: 22 June 2015
Abstract
The study of polynuclear metal complexes has gained great recognition over the last decade owing to their fascinating topological structures, various properties, and potential applications as functional solid materials in luminescence, catalysis, and magnetic materials. A large number of heterodinuclear 3d–4f and 3d–3d′ complexes have been widely studied due to their functional applications. To our knowledge, structurally characterised heterodinuclear (3d–Na, 3d–K) and homodinuclear (Na–Na) metal complexes are rare. Three metal complexes, [CuIINaI(HL1)2(SbF6)]n (1), [CuIIKI(HL1)2(PF6)]n (2), and [Na2(H2L2)2] (3), were synthesised by two kinds of ligands, o-vanillin (HL1) and N,N′-ethylene-bis(3-methoxysalicylideneimine) (H2L2). The structures of heterodinuclear complexes 1 and 2 are both one-dimensional chain structures, including transition metal ions (CuII) and main group metal ions (NaI and KI). However, the complex 3, as a homodinuclear metal complex, only has one kind of centre, a NaI ion. The structures of complexes 1–3 were determined by single crystal X-ray crystallographic studies.
References
[1] M. R. Marvel, J. Lesage, J. Baek, P. S. Halasyamani, C. L. Stern, K. R. Poeppelmeier, J. Am. Chem. Soc. 2007, 129, 13963.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOitb%2FO&md5=23a61cbf41d0e0cf2cd540a6ae2d62f5CAS | 17944466PubMed |
[2] A. J. Blake, N. R. Champness, P. Hubberstey, M. A. Withersby, M. Schroder, Coord. Chem. Rev. 1999, 183, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslarsr0%3D&md5=4179a8a5bb99e269e55062d0d72b614cCAS |
[3] H. Koshima, H. Miyamoto, I. Yagi, K. Uosaki, Cryst. Growth Des. 2004, 4, 807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVGns70%3D&md5=4c9ba32ac5ed5d7ca2e8636a3986a3b9CAS |
[4] D. Braga, L. Maini, M. Polito, L. Scaccianoce, G. Cojazzi, F. Grepioni, Coord. Chem. Rev. 2001, 225, 216.
[5] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlyqtrg%3D&md5=b0d6b0b7008236e35b4e4d71ef4c8e3bCAS | 11709994PubMed |
[6] G. J. McManus, J. J. Perry, M. Perry, M. Perry, B. D. Wagner, M. J. Zaworotko, J. Am. Chem. Soc. 2007, 129, 9094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Chtb8%3D&md5=3c6d6fa77e1daf764ead2e7116b5bf87CAS | 17602624PubMed |
[7] F. Nouar, J. F. Eubank, T. Bousquet, L. Wojtas, M. J. Zaworotko, M. Eddaoudi, J. Am. Chem. Soc. 2008, 130, 1833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFCqtw%3D%3D&md5=7b4de118de92cdd44f0970724b04fec1CAS | 18205363PubMed |
[8] K. Uemura, K. Saito, S. Kitagawa, H. Kita, J. Am. Chem. Soc. 2006, 128, 16122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1GjsLrL&md5=9807dec95f62b0685a03abe8b4c4b3c4CAS | 17165765PubMed |
[9] A. R. Millward, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 17998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GktLnJ&md5=a89f1c727115d1054c44fbc5d105ed7bCAS | 16366539PubMed |
[10] J. L. C. Rowsell, O. M. Yaghi, J. Am. Chem. Soc. 2006, 128, 1304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitV2msg%3D%3D&md5=55eca01794196a0a097697b556c6f02fCAS |
[11] M. Nayak, R. Koner, H. Stoeckli-Evans, S. Mohanta, Cryst. Growth Des. 2005, 5, 1907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWiu7c%3D&md5=3ba6dffad34594aa255241e0b1eeef88CAS |
[12] P. Agnihotri, E. Eringathodi, P. Paul, P. K. Ghosh, Eur. J. Inorg. Chem. 2006, 3369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpsl2gtL8%3D&md5=cc4c4ab127d88fe354a56afdb2f98c80CAS |
[13] F. G. Vogt, J. S. Clawson, M. Strohmeier, A. J. Edwards, T. N. Pham, S. A. Watson, Cryst. Growth Des. 2009, 9, 921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyhs7nE&md5=93e85cf641d277f9ce45efbb3ecbe1b0CAS |
[14] W.-H. Wang, P.-H. Xi, X.-Y. Su, J.-B. Lan, Z.-H. Mao, J.-S. You, R.-G. Xie, Cryst. Growth Des. 2007, 7, 741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVCmtbs%3D&md5=41334d9eabb3f166203a9230baa1446bCAS |
[15] Q. Li, P. F. Yan, P. Chen, G. F. Hou, G. M. Li, J. Inorg. Organomet. Polym. 2012, 22, 1174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WrtrjP&md5=3a74819e01fb38c9fba110c741269f33CAS |
[16] Y. Yang, P. F. Yan, P. Gao, T. Gao, G. F. Hou, G. M. Li, J. Inorg. Organomet. Polym. 2013, 23, 1211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCqs7fK&md5=504a1944b0d9706a4dcb001a610946f0CAS |
[17] J. F. Remenar, S. L. Morissette, M. L. Peterson, B. Moulton, J. M. MacPhee, H. R. Guzman, O. Almarsson, J. Am. Chem. Soc. 2003, 125, 8456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksl2htbc%3D&md5=9deef1218b05207a58b216a612f59c64CAS | 12848550PubMed |
[18] T. E. Keyes, R. J. Forster, A. M. Bond, W. Miao, J. Am. Chem. Soc. 2001, 123, 2877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKisbY%3D&md5=3a6184cea536e02d2ebbe4ca696b4968CAS | 11456976PubMed |
[19] P. Le Magueres, S. M. Hubig, S. V. Lindeman, P. Veya, J. K. Kochi, J. Am. Chem. Soc. 2000, 122, 10073.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. A. Bis, O. L. Mclaughlin, P. Vishweshwar, M. J. Zaworotko, Cryst. Growth Des. 2006, 6, 2648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOjsL7K&md5=04af873ff1e4046df7a33c417beda68aCAS |
[21] G. P. Stahly, Cryst. Growth Des. 2007, 7, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVCls78%3D&md5=79ab2e40cdd4a50cf492a3fc7844456cCAS |
[22] S. Karki, L. Fabian, T. Friscic, W. Jones, Org. Lett. 2007, 9, 3133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsF2jtb4%3D&md5=56b59c596ae4620c3ecf3c95cf2654f6CAS | 17629292PubMed |
[23] L. R. MacGillivray, G. S. Papaefstathiou, T. Friscic, T. D. Hamilton, D.-K. Bucar, Q. Chu, D. B. Varshney, I. G. Georgiev, Acc. Chem. Res. 2008, 41, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVagtb8%3D&md5=c55031888f39c07a8fb6a5ed8e560316CAS | 18281948PubMed |
[24] H. Koshima, M. Nagano, T. Asahi, J. Am. Chem. Soc. 2005, 127, 2455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlSgtw%3D%3D&md5=e9f8d963f8cf4b7f3ef904bf0449713fCAS | 15725000PubMed |
[25] B. Olenik, R. Boese, R. Sustmann, Cryst. Growth Des. 2003, 3, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ers7g%3D&md5=fa65ae8b648451991a3c853e47192a95CAS |
[26] F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, P. Gunter, J. Am. Chem. Soc. 1996, 118, 6315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFCisLc%3D&md5=ad6ed3ff44d7bcac0a0fc214273df8dbCAS |
[27] U. Geiser, S. K. Kumar, B. M. Savall, S. S. Harried, K. D. Carlson, P. R. Mobley, H. H. Wag, J. M. Williams, R. E. Botto, Chem. Mater. 1992, 4, 1077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Witbc%3D&md5=24f2ec488ecc6291226c908060dc800fCAS |
[28] C. B. Aakeroy, M. E. Fasulo, J. Desper, Pharmaceutics 2007, 4, 317.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. Nayak, R. Koner, H.-H. Lin, U. Florke, H.-H. Wei, S. Mohanta, Inorg. Chem. 2006, 45, 10764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SqtLjP&md5=4f6cba981507f0950072d2011be7dc10CAS | 17173434PubMed |
[30] S. Hazra, R. Koner, M. Nayak, H. A. Sparkes, J. A. K. Howard, S. Mohanta, Cryst. Growth Des. 2009, 9, 3603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmtrw%3D&md5=04334eae8c94b82119650dabe31029e9CAS |
[31] M. Nayak, S. Hazra, P. Lemoine, R. Koner, C. R. Lucas, S. Mohanta, Polyhedron 2008, 27, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Cgtr4%3D&md5=9a676e6141d33a36b699b0c8840f0c8dCAS |
[32] C.-C. Chou, C.-C. Su, H.-L. Tsai, K.-H. Lii, Inorg. Chem. 2005, 44, 628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlShsA%3D%3D&md5=8b0653cd5ec82d80d4d489aa897942d9CAS | 15679394PubMed |
[33] M. Palaniandavar, R. J. Butcher, A. W. Addison, Inorg. Chem. 1996, 35, 467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVI%3D&md5=ae348b92b76954c186d6d989638985e9CAS | 11666231PubMed |
[34] R. C. Holz, L. C. Thompson, Inorg. Chem. 1993, 32, 5251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvVGjt7k%3D&md5=60054684fc4c8c30d5f2dc432e20da22CAS |
[35] P. Jones, R. S. Vagg, P. A. Williams, Inorg. Chem. 1984, 23, 4110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtl2itL0%3D&md5=b110b5ce53044d06dd8f80614068ffb5CAS |
[36] W. J. Evans, T. J. Boyle, J. W. Ziller, Inorg. Chem. 1992, 31, 1120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht12isb0%3D&md5=7ae86f6e514896941372dbf0a3ac8eabCAS |
[37] Y.-M. Jeon, J. Kim, D. Whang, K. Kim, J. Am. Chem. Soc. 1996, 118, 9790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12ltbo%3D&md5=06daa8fb20c597b35e367e7d41ff21bcCAS |
[38] H. Piotrowski, K. Polborn, G. Hilt, K. Severin, J. Am. Chem. Soc. 2001, 123, 2699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Cksbo%3D&md5=732b05bac5eb46143a48d0956edddbc0CAS | 11456954PubMed |
[39] B. F. Abrahams, N. J. FitzGerald, T. A. Hudson, R. Robson, R. D. Shalders, Aust. J. Chem. 2007, 60, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeisrY%3D&md5=555ad8cd881c5211d72a75e2047f326dCAS |
[40] R. M. Kevwitch, C. S. Shanahan, D. V. Mc Grath, New J. Chem. 2012, 36, 492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCnsL8%3D&md5=33f5910ea169e24cdc3806b8366c5461CAS |
[41] M. U. Anwar, L. N. Dawe, S. S. Tandon, S. D. Bungec, L. K. Thompson, Dalton Trans. 2013, 42, 7781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFaqtL8%3D&md5=053a18a21d26a3304a60b21c6099ce31CAS | 23552191PubMed |
[42] W.-Y. Bi, X.-Q. Lü, W.-L. Chai, J.-R. Song, W.-Y. Wong, W.-K. Wong, R. A. Jones, J. Mol. Struct. 2008, 891, 450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhsbvI&md5=3ad1b0f632fdfe5a70997454af16fbd4CAS |
[43] X.-Q. Lü, W.-Y. Bi, W.-L. Chai, J.-R. Song, J.-X. Meng, W.-Y. Wong, W.-K. Wong, R. A. Jones, New J. Chem. 2008, 32, 127.
| Crossref | GoogleScholarGoogle Scholar |
[44] Y.-N. Guo, G.-F. Xu, P. Gamez, L. Zhao, S.-Y. Lin, R.-P. Deng, J.-K. Tang, H.-J. Zhang, J. Am. Chem. Soc. 2010, 132, 8538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCnsLw%3D&md5=1418c34323d287448d065386e18705afCAS | 20527747PubMed |
[45] S.-F. Xue, X.-H. Chen, L. Zhao, Y.-N. Guo, J.-K. Tang, Inorg. Chem. 2012, 51, 13264.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslyltbvJ&md5=6b6a7f84d4534ce3a5484fabbd09dedaCAS |
[46] R. Koner, H.-H. Lin, H.-H. Wei, S. Mohanta, Inorg. Chem. 2005, 44, 3524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2gtLk%3D&md5=d3baa9114c50cc7ce8c799260cbbcaa9CAS | 15877435PubMed |
[47] R. Koner, G.-H. Lee, Y. Wang, H.-H. Wei, S. Mohanta, Eur. J. Inorg. Chem. 2005, 1500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVCmsb4%3D&md5=cb1d7d28897d560709336dff7bca89b3CAS |
[48] S. Hazra, R. Koner, M. Nayak, H. A. Sparkes, J. A. K. Howard, S. Mohanta, Cryst. Growth Des. 2009, 9, 3603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmtrw%3D&md5=04334eae8c94b82119650dabe31029e9CAS |
[49] M. Nayak, A. Jana, M. Fleck, S. Hazra, S. Mohanta, CrystEngComm 2010, 12, 1416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVWgtLk%3D&md5=30af4f89ab57431171169720b02e14a4CAS |
[50] M. Nayak, R. Koner, H.-H. Lin, U. Florke, H.-H. Wei, S. Mohanta, Inorg. Chem. 2006, 45, 10764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SqtLjP&md5=4f6cba981507f0950072d2011be7dc10CAS | 17173434PubMed |
[51] S. Hazra, S. Sasmal, M. Nayak, H. A. Sparkes, J. A. K. Howard, S. Mohanta, CrystEngComm 2010, 12, 470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslGjtLk%3D&md5=edfef248d5d316d95c43be525907ffbeCAS |
[52] M. Nayak, S. Sarkar, P. Lemoine, S. Sasmal, R. Koner, H. A. Sparkes, J. A. K. Howard, S. Mohanta, Eur. J. Inorg. Chem. 2010, 744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1KjsbY%3D&md5=db77584d2721fd461b555138bc4d05c1CAS |
[53] S. Sarkar, M. Nayak, M. Fleck, S. Dutta, U. Florke, R. Koner, S. Mohanta, Eur. J. Inorg. Chem. 2010, 735.
| Crossref | GoogleScholarGoogle Scholar |
[54] M. Nayak, S. Hazra, P. Lemoine, R. Koner, C. R. Lucas, S. Mohanta, Polyhedron 2008, 27, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Cgtr4%3D&md5=9a676e6141d33a36b699b0c8840f0c8dCAS |
[55] W. Xie, M. J. Heeg, P. G. Wang, Inorg. Chem. 1999, 38, 2541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1eqtrw%3D&md5=baf3594297b5cf9772ef0a66c46f181eCAS |
[56] M. Das, S. Chatterjee, S. Chattopadhyay, Inorg. Chem. Commun. 2011, 14, 1337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Cgs70%3D&md5=38b9bbbbe387520ba3a67b51995076beCAS |
[57] J.-P. Costes, G. Novitchi, S. Shova, F. Dahan, B. Donnadieu, J.-P. Tuchagues, Inorg. Chem. 2004, 43, 7792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVamsbg%3D&md5=a761462ebb535ef6fa9608e1cf07645fCAS | 15554644PubMed |
[58] S. Biswas, S. Naiya, M. G. B. Drew, C. Estarellas, A. Frontera, A. Ghosh, Inorg. Chim. Acta 2011, 366, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGltw%3D%3D&md5=3ffd72d7edb8220927e8aa03ca5293b0CAS |
[59] F. Lam, J. X. Xu, K. S. Chan, J. Org. Chem. 1996, 61, 8414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslCgurg%3D&md5=95b769e45b167a1b5c78b1c81e0091ebCAS |
[60] G. M. Sheldrick, SHELXS 97, Program for the Solution of Crystal Structures 1997 (University of Göttingen: Göttingen).
[61] G. M. Sheldrick, SHELXL 97, Program for the Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).