Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Alternating Ring-Opening Copolymerization of Cyclohexene Oxide and Maleic Anhydride with Diallyl-Modified Manganese(iii)–Salen Catalysts

Dengfeng Liu A B C , Zhao Zhang B , Xingmei Zhang B and Xingqiang Lü B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

B Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi'an 710069, China.

C Corresponding author. Email: liudf78@xust.edu.cn

Australian Journal of Chemistry 69(1) 47-55 https://doi.org/10.1071/CH15162
Submitted: 23 September 2014  Accepted: 6 June 2015   Published: 3 July 2015

Abstract

A series of diallyl-modified (salen)MnIII complexes have been designed, synthesized, and applied in the cyclohexene oxide and maleic anhydride ring-opening copolymerization. The experimental results show that these complexes are effective in the presence of co-catalyst 4-(dimethylamino)pyridine (DMAP). Of all the five catalysts, the catalyst (salcyen)MnCl (salcyen = 2-((E)-(2-((E)-5-allyl-2-hydroxy-3-methoxybenzylideneamino)cyclohexylimino)methyl)-4-allyl-6-methoxyphenol) exhibited the best catalytic performance under the conditions applied, and the cyclohexane of diimine bridge is conjugated with the two diallyl-salen-type moieties. This conjugation can increase the electron density of the centre MnIII cation so that catalyst (salcyen)MnCl favours the formation of reaction intermediates. Moreover, the anion effect of Cl is proved to be the best in the catalytic performances. Among the three co-catalysts (DMAP, triphenylphosphine (Ph3P), and tetra-n-butylammonium bromide (n-Bu4NBr)) tested, DMAP is the most efficient towards monomer conversion and polymer chain growth.


References

[1]  A. E. Felber, M. H. Dufresne, J. C. Leroux, Adv. Drug Delivery Rev. 2012, 64, 979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFeiurnO&md5=20d40eff2b2391b4aec861b39048fd02CAS |

[2]  J. G. Blaivas, J. Sandhu, Curr. Opin. Urol. 2004, 14, 335.
         | 15626875PubMed |

[3]  R. Suuronen, C. Lindqvist, Encyclopedia of Biomaterials and Biomedical Engineering 1994 (Marcel Dekker Inc.: New York, NY).

[4]  C. C. Chu, Sutures 2007 (John Wiley & Sons Inc.: Hoboken, NJ).

[5]  M. J.-L. Tschan, E. Brulé, P. Haquette, C. M. Thomas, Polym. Chem. 2012, 3, 836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFKgtLk%3D&md5=5a25a955e7b3ecebda94e199bc836ffeCAS |

[6]  C. M. Thomas, Chem. Soc. Rev. 2010, 39, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsr3E&md5=fbb58c1385965bc450d84d6c50481977CAS | 20023847PubMed |

[7]  N. Ajellal, J. F. Carpentier, C. Guillaume, S. M. Guillaume, M. Helou, V. Poirier, Y. Sarazin, A. Trifonov, Dalton Trans. 2010, 39, 8363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqt77E&md5=df8f4d1949f5dd2fb8fba0e17aad8596CAS | 20424735PubMed |

[8]  D. J. A. Cameron, M. P. Shaver, Chem. Soc. Rev. 2011, 40, 1761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kitro%3D&md5=9faae2eacdf16dc184cd5b2920ba53e9CAS |

[9]  J. Xu, Z. Liu, R. Zhou, J. Appl. Polym. Sci. 2006, 101, 1988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Wqsbk%3D&md5=d40ed71a45d075595d431f6280fb170eCAS |

[10]  D. J. Darensbourg, Chem. Rev. 2007, 107, 2388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSmurY%3D&md5=8b6ab28fb9974b15670ca3ff5d48c060CAS | 17447821PubMed |

[11]  E. Brulé, J. Guo, G. W. Coates, C. M. Thomas, Macromol. Rapid Commun. 2011, 32, 169.
         | Crossref | GoogleScholarGoogle Scholar | 21433137PubMed |

[12]  X.-B. Lu, W.-M. Ren, G.-P. Wu, Acc. Chem. Res. 2012, 45, 1721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCht7fE&md5=919fc7e40f5b4fdeeaa9d2e83a0fda5eCAS | 22857013PubMed |

[13]  X.-B. Lu, D. J. Darensbourg, Chem. Soc. Rev. 2012, 41, 1462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVajsbg%3D&md5=6defcab14a8191948fe6e67886325559CAS | 21858339PubMed |

[14]  T. Tsuruta, K. Matsuura, S. Inoue, Makromol. Chem. 1964, 75, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktlarur4%3D&md5=d901adc3f9c65ea6fb8458f2496db4dbCAS |

[15]  R. C. Jeske, J. M. Rowley, G. W. Coates, Angew. Chem., Int. Ed. 2008, 47, 6041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslagu7Y%3D&md5=100441b3e9306921e3244ac712c0af13CAS |

[16]  X.-K. Sun, X.-H. Zhang, S. Chen, B.-Y. Du, Q. Wang, Z.-Q. Fan, G.-R. Qi, Polymer 2010, 51, 5719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2it73L&md5=c2f0ac597611e5639d73675c791a27d0CAS |

[17]  S. Huijser, E. H. Nejad, R. Sablong, C. de Jong, C. E. Koning, R. Duchateau, Macromolecules 2011, 44, 1132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVertrw%3D&md5=89221c6cbf596534b3019c108b7d8258CAS |

[18]  D. J. Darensbourg, R. R. Poland, C. Escobedo, Macromolecules 2012, 45, 2242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislSqs78%3D&md5=142b27499009bb5126f6409f1aaaa6d2CAS |

[19]  T. Aida, S. Inoue, J. Am. Chem. Soc. 1985, 107, 1358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXps1WisA%3D%3D&md5=c2c9f43969eb82cce571412a167472e4CAS |

[20]  T. Aida, S. Koichi, S. Inoue, Macromolecules 1985, 18, 1049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktVKktrs%3D&md5=613feee00daeccb7a78c82a4f02bed90CAS |

[21]  S. Asano, T. Aida, S. Inoue, Macromolecules 1985, 18, 2057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1SqsrY%3D&md5=71e9239f140ef08ea2c54bd3de85a126CAS |

[22]  T. Aida, Y. Maekawa, S. Asano, S. Inoue, Macromolecules 1988, 21, 1195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVGit7k%3D&md5=43becff379ef24a67fdcbf1c22856ef0CAS |

[23]  Y. Maeda, A. Nakayama, N. Kawasaki, K. Hayashi, S. Aiba, N. Yamamoto, Polymer 1997, 38, 4719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1egsLc%3D&md5=fecd86ef619c3e76291b2b6160a24500CAS |

[24]  R. C. Jeske, A. M. DiCiccio, G. W. Coates, J. Am. Chem. Soc. 2007, 129, 11330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFCju7c%3D&md5=83d17e837f30c5d4ede27bb4ed4d40f3CAS | 17722928PubMed |

[25]  E. H. Nejad, A. Paoniasari, C. E. Koning, R. Duchateau, Polym. Chem. 2012, 3, 1308.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. M. DiCiccio, G. W. Coates, J. Am. Chem. Soc. 2011, 133, 10724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFans7k%3D&md5=99684694929bf525ba86fca67d8ea1f7CAS | 21699247PubMed |

[27]  E. H. Nejad, C. G. W. van Melis, T. J. Vermeer, C. E. Koning, R. Duchateau, Macromolecules 2012, 45, 1770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFagt7s%3D&md5=b52c5c961787c4ebe83abb4553400321CAS |

[28]  E. H. Nejad, A. Paoniasari, C. G. W. Melis, C. E. Koning, R. Duchateau, Macromolecules 2013, 46, 631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslOntg%3D%3D&md5=5a3c1bcebba384d7f3dbcdbfffd95dc4CAS |

[29]  C. Robert, T. Ohkawara, K. Nozaki, Chem. – Eur. J. 2014, 20, 4789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1SitLc%3D&md5=d794e671d1f5bcfe89f8f67eb5e827b2CAS | 24616033PubMed |

[30]  R. M. Haak, A. M. Castilla, M. M. Belmonte, E. C. Escudero-Adán, J. Benet-Buchholz, A. W. Kleij, Dalton Trans. 2011, 40, 3352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGrsLs%3D&md5=4bfd82b620580953a19076bb66113956CAS | 21293818PubMed |

[31]  P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 2008, 252, 1871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVagtbvF&md5=839ba2cd2bf730377940ad2ac624347eCAS |

[32]  S. Huijser, B. B. P. Staal, J. Huang, R. Duchateau, C. E. Koning, Biomacromolecules 2006, 7, 2465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnsl2rt70%3D&md5=0fabe9133396c5406008ad1b6b6418bbCAS | 16961304PubMed |

[33]  S. Huijser, B. B. P. Staal, J. Huang, R. Duchateau, C. E. Koning, Angew. Chem., Int. Ed. 2006, 45, 4104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFynsLk%3D&md5=f7dbdf7c7945338d35d385e7ba85e33dCAS |

[34]  G. M. Sheldrick, SHELXL-97: Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).

[35]  G. M. Sheldrick, SADABS 1996 (University of Göttingen: Göttingen).

[36]  E. Kim, J. Y. Kim, H. Rhee, Bull. Korean Chem. Soc. 2004, 25, 1720.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSis7jI&md5=82a7087b187a756728179f61aa4987a8CAS |

[37]  R. M. Haak, M. M. Belmonte, E. C. Escudero-Adán, J. Benet-Buchholz, A. W. Kleij, Dalton Trans. 2010, 39, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKnsLvE&md5=7641167ad5715c76da8f6510489c4fb7CAS |

[38]  W.-X. Feng, Y. Zhang, Z. Zhang, P.-Y. Su, X.-Q. Lü, J.-R. Song, D.-D. Fan, W. K. Wong, R. A. Jones, C.-Y. Su, J. Mater. Chem. C 2014, 2, 1489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaltL4%3D&md5=81c84dbd09ddeedd734b3171b0c8e83bCAS |

[39]  H. Ajiro, K. L. Peretti, E. B. Lobkovsky, G. W. Coates, Dalton Trans. 2009, 41, 8828.
         | Crossref | GoogleScholarGoogle Scholar | 19826713PubMed |

[40]  S. Chattopadhyay, M. G. B. Drew, A. Ghosh, Eur. J. Inorg. Chem. 2008, 2008, 1693.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  T. Aida, S. Inoue, Acc. Chem. Res. 1996, 29, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSksrrF&md5=d9a9cd2d563087472794f745d7a28783CAS |

[42]  W. J. van Meerendonk, R. Duchateau, C. E. Koning, G. J. M. Gruter, Macromolecules 2005, 38, 7306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVWnsL8%3D&md5=25a137ba21f7acf56457705337ffb87dCAS |

[43]  N. Nomura, A. Taira, A. Nakase, T. Tomioka, M. Okada, Tetrahedron 2007, 63, 8478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotV2kurs%3D&md5=d2436e94b35071fe73c25c78a0545e95CAS |

[44]  D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers, C.-C. Fang, D. R. Billodeaux, J. H. Reibenspies, Inorg. Chem. 2004, 43, 6024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVSks7g%3D&md5=713562357f2dcb31cd8ee5f16ba255e6CAS | 15360252PubMed |

[45]  J. Liu, Y.-Y. Bao, Y. Liu, W.-M. Ren, X.-B. Lu, Polym. Chem. 2013, 4, 1439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Wjt7k%3D&md5=2900c3c794c2fa378593d05a2962df4dCAS |