Preparation and Gas Sensing Properties of Hierarchical Flower-Shaped Bi2WO6
Jingkun Xiao A , Chengwen Song A B , Wei Dong A , Yanyan Yin A and Chen Li AA College of Environment Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
B Corresponding author. Email: chengwensong@dlmu.edu.cn
Australian Journal of Chemistry 69(1) 107-111 https://doi.org/10.1071/CH15152
Submitted: 31 March 2015 Accepted: 22 June 2015 Published: 17 July 2015
Abstract
Hierarchical flower-shaped Bi2WO6 was obtained by a simple hydrothermal method. Morphology and structure of the Bi2WO6 were characterised by single electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and N2 adsorption techniques. Gas sensing properties of the Bi2WO6 sensor were investigated by a static gas-sensing system. The results show the as-synthesised flower-shaped product is pure orthorhombic Bi2WO6, which is composed of nanosheets with ~10–20 nm in thickness and hundreds of nanometres in planar size. At this optimal operating temperature of 300°C, the Bi2WO6 sensor exhibits ultra-fast response (1-2 s) and fast recovery time (6–12 s) towards ethanol detection, and high selectivity to other gases such as methanol, benzene, dichloromethane, and hexane.
References
[1] Y. Hou, A. H. Jayatissa, Sens. Actuators, B 2014, 204, 310.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Klur7F&md5=cad3da28d888ae70fa295273f475c867CAS |
[2] A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 2004, 34, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOju70%3D&md5=6ee962ba5bee976d6e266ac00931eaabCAS |
[3] N. Yamazoe, K. Shimanoe, Sens. Actuators, B 2009, 138, 100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVWktLc%3D&md5=18922952fbb0fd20f0c03df05e22d208CAS |
[4] Z. Lou, J. Deng, L. Wang, L. Wang, T. Zhang, Sens. Actuators, B 2013, 182, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ahsb4%3D&md5=b14f161d6a83860f3a3691810240908bCAS |
[5] S. P. Hu, C. Y. Xu, W. S. Wang, F. X. Ma, L. Zhen, Ceram. Int. 2014, 40, 11689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVKntb8%3D&md5=38ee966843ada0834e8ee779a287cb2bCAS |
[6] S. J. Kim, I. S. Hwang, Y. C. Kang, J. H. Lee, Sensors 2011, 11, 10603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WrsLrF&md5=9c1bc43b6d54fc4008577081863c3e35CAS | 22346661PubMed |
[7] C. Zhang, Y. Zhu, Chem. Mater. 2005, 17, 3537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1SntL0%3D&md5=929c852175f6cca558874dd683ac61d3CAS |
[8] Y. Li, J. Liu, X. Huang, Nanoscale Res. Lett. 2008, 3, 365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyhtrrL&md5=d61fa29c1cdc51e91bd8676a84640b93CAS |
[9] Z. Chen, L. Qian, J. Zhu, Y. Yuan, X. Qian, CrystEngComm 2010, 12, 2100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSkt74%3D&md5=b39f71c515fffe79ec01673dbf587848CAS |
[10] S. Sun, W. Wang, L. Zhang, J. Mater. Chem. 2012, 22, 19244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ensbzE&md5=982e35c612368125c609b67309c01897CAS |
[11] S. P. Hu, C. Y. Xu, L. Zhen, Mater. Lett. 2013, 95, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVyitbc%3D&md5=880cabfac1a21c1a066c16c6e762be51CAS |
[12] D. Wang, Y. Zhen, G. Xue, F. Fu, X. Liu, D. Li, J. Mater. Chem. C 2013, 1, 4153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlCltr0%3D&md5=5cb70d89741541326a0ce473ca5e6659CAS |
[13] C. Li, G. Chen, J. Sun, Y. Feng, J. Liu, H. Dong, Appl. Catal., B 2015, 163, 415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSmtrvP&md5=c4fb7a07f9040133c477583d6ebd2b37CAS |
[14] Y. Jiang, C. He, R. Sun, Z. Xie, L. Zheng, Mater. Chem. Phys. 2012, 136, 698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWks7rO&md5=db065202c5fc4c92a598962fa89bdfffCAS |
[15] M. Ge, L. Liu, Mater. Sci. Semicond. Process. 2014, 25, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFShsbk%3D&md5=aefa6e86195488bc8597ec432b4de32dCAS |
[16] J. He, W. Wang, F. Long, Z. Zou, Z. Fu, Z. Xu, Mater. Sci. Eng., B 2012, 177, 967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Chsbo%3D&md5=872640ac243bca8dff57b45cf3bc2ba9CAS |
[17] L. Wu, J. Bi, Z. Li, X. Wang, X. Fu, Catal. Today 2008, 131, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2jsLs%3D&md5=a6969e2cb70cd70c5c329182094a65efCAS |
[18] W. Chen, Q. Zhou, F. Wan, T. Gao, J. Nanomater. 2012, 2012, 1.
[19] N. V. Hieu, V. V. Quang, N. D. Hoa, D. Kim, Curr. Appl. Phys. 2011, 11, 657.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, M. H. Yaacob, K. Latham, W. Wlodarski, Mater. Chem. Phys. 2013, 141, 912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyku7vP&md5=d469ee834a638330b89b8dd32c58a3c7CAS |
[21] H. Zhang, T. Liu, L. Huang, W. Guo, D. Liu, W. Zeng, Phys. E (Amsterdam, Neth.) 2012, 44, 1467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFOis74%3D&md5=7e640e84558a20cc7a27929f79d561bbCAS |
[22] H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, J. H. Lee, Chem. Commun. 2010, 46, 5061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCntbc%3D&md5=3f1cbe6c7c1823bff689a3f3a3d57c50CAS |
[23] Y. Zhao, J. Liu, Q. Liu, Y. Sun, D. Song, W. Yang, J. Wang, L. Liu, Mater. Lett. 2014, 136, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVequrzN&md5=ebd2029b9b4b35ca47c8ae17ec6d03a6CAS |
[24] X. Li, T. Lou, X. Sun, Y. Li, Inorg. Chem. 2004, 43, 5442.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVShurY%3D&md5=3ed9e1c2ff2fcd97b04a9846af6be814CAS | 15310226PubMed |