Assembly of New Merocyanine Chromophores with a 1,8-Naphthalimide Core by a New Method for the Synthesis of the Methine Function
Aleksey A. Vasilev A F , Stanislav Baluschev B , Diana Cheshmedzhieva A , Sonia Ilieva A , Obis D. Castaño C , Juan J. Vaquero D , Silvia E. Angelova C E and Katharina Landfester BA Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, James Bourchier 1, 1164 Sofia, Bulgaria.
B Max Planck Institute for Polymer Research, PO Box 3148 - D-55021 Mainz, Germany.
C Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
D Departamento de Química Orgánica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
E Permanent address: Institute of Organic Chemistry with Centre of Phytochemisty, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria.
F Corresponding author. Email: ohtavv@chem.uni-sofia.bg
Australian Journal of Chemistry 68(9) 1399-1408 https://doi.org/10.1071/CH15139
Submitted: 21 March 2015 Accepted: 13 July 2015 Published: 25 August 2015
Abstract
A new method for the synthesis of the monomethine group using nitro as a leaving group in an SN-Ar reaction is described. A series of novel merocyanine dyes has been synthesised and their photophysical properties have been elucidated. The longest wavelength absorption occurs in the range 519–619 nm and the molar absorptivities vary with the substituents and are in the range 1000–47700 L mol–1 cm–1. The dyes show high chemical and photostability. One example from the series has the ability to distinguish methanol from ethanol. The introduction of a quinoid fragment into the structure leads to a pronounced intramolecular charge transfer and hence a noticeable positive solvatochromism. The structures and electronic properties of the compounds have been studied by density functional theory (DFT) and time-dependent DFT.
References
[1] P. D. Zoon, A. M. Brouwer, ChemPhysChem 2005, 6, 1574.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12ntLk%3D&md5=7b89a02b39b083b8ef477750aa297a5cCAS | 16015670PubMed |
[2] A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera, Chem. Rev. 2000, 100, 1973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFequ74%3D&md5=84f6ca7f0883edc4504014411d695b3eCAS | 11749281PubMed |
[3] S. R. Marder, J. W. Perry, B. G. Tiemann, C. B. Gorman, S. Gilmour, S. L. Biddle, G. Bourhill, J. Am. Chem. Soc. 1993, 115, 2524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlensr8%3D&md5=b4caad51153da5eba56d4bef13b2f24cCAS |
[4] S. R. Marder, C. B. Gorman, B. G. Tiemann, L. T. Cheng, J. Am. Chem. Soc. 1993, 115, 3006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVygs70%3D&md5=bf41af99ae1d6db255a166931420b8e5CAS |
[5] S. R. Marder, C. B. Gorman, F. Meyers, J. W. Perry, G. Bourhill, J. L. Bredas, B. M. Pierce, Science 1994, 265, 632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlKhsrg%3D&md5=cdfc72a15a3178300e04fe061c535750CAS | 17752759PubMed |
[6] J. Cabrera, O. Althoff, H.-T. Man, H. Y. Yoon, Adv. Mater. 1994, 6, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslSktA%3D%3D&md5=ac0b65d70c047a445e035e650fb3dbadCAS |
[7] C. Gomer, Photochem. Photobiol. 1991, 54, 1093.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVKhtw%3D%3D&md5=b3d6d75a06d539b387327b73d9f7c5b1CAS | 1775531PubMed |
[8] R. W. Redmond, M. B. Srichai, J. M. Bilitz, D. D. Schlomer, M. Krieg, Photochem. Photobiol. 1994, 60, 348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFKis70%3D&md5=00b35e6d6ef1c5e350619b97ae17a545CAS | 7527561PubMed |
[9] A. Harriman, L. C. T. Shoute, P. Neta, J. Phys. Chem. 1991, 95, 2415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtlyqt7c%3D&md5=e9e57443797cac5e0c41c7eb07be7fceCAS |
[10] N. S. Dixit, R. A. Mackay, J. Am. Chem. Soc. 1983, 105, 2928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1ansrw%3D&md5=d5472d1c2c839ce55f5569ec42111bc7CAS |
[11] G. Salama, M. Morad, Science 1976, 191, 485.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287gsVKhsQ%3D%3D&md5=20155f668c4e7d90a3ff46547ed08436CAS | 1082169PubMed |
[12] M. A. Kessler, O. S. Wolfbeis, Anal. Biochem. 1992, 200, 254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs12gtLY%3D&md5=5d49068b826dacde52e639564e722688CAS | 1378702PubMed |
[13] F. Sieber, Photochem. Photobiol. 1987, 46, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXntFeiuw%3D%3D&md5=5f1d136b28747a1debd38967e8b57435CAS | 3325998PubMed |
[14] C. Reichardt, Chem. Rev. 1994, 94, 2319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntV2gtrY%3D&md5=cb8a232281ffef1590182d193c56d19bCAS |
[15] W. W. Stewart, Nature 1981, 292, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XjtVGm&md5=d4c71727df6c7fff86600e76a53d6c11CAS | 6168915PubMed |
[16] T. N. Konstantinova, P. Meallier, I. Grabtchev, Dyes Pigm. 1993, 22, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFaisL0%3D&md5=bed1e2e074a9228e8c15abf7f0387136CAS |
[17] R. J. Hodgkiss, G. W. Jones, A. Long, R. W. Middleton, J. Parrick, M. R. L. Stratford, J. Med. Chem. 1991, 34, 2268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksV2msrk%3D&md5=5c6b878041afd00a7609f4cd9ef2eab3CAS | 2066999PubMed |
[18] C. Bailly, M. Brana, M. Waring, Eur. J. Biochem. 1996, 240, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1ynurs%3D&md5=e298dd7aa2d8d6a4f35b77e10f4ac205CAS | 8797854PubMed |
[19] D. Rideout, R. Schinazi, C. D. Pauza, K. Lovelace, L. C. Chiang, M. McCarthy, J. Cell. Biochem. 1993, 51, 446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVGnsr0%3D&md5=a02b153d22eb4538b7c12b645c9aed53CAS | 7684385PubMed |
[20] A. P. de Silva, H. Q. Gunaratne, J. L. Habib-Jiwan, C. P. McCoy, T. E. Rice, J. P. Soumilion, Angew. Chem. Int. Ed. Engl. 1995, 34, 1728.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Pardo, E. Martin, J. M. Poyato, J. J. Camacho, J. M. Guerra, R. Weigand, J. Photochem. Photobiol. A 1989, 48, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFSntw%3D%3D&md5=af8224cb67695c27770636cd573aca3bCAS |
[22] T. Martynski, K. Mykowska, D. Bauman, J. Mol. Struct. 1994, 325, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntFWksLY%3D&md5=861d1a0f7f2eec4c585f5fc4ddeb2c82CAS |
[23] D. Srikun, E. W. Miller, D. W. Domaille, C. J. Chang, J. Am. Chem. Soc. 2008, 130, 4596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFGjs7g%3D&md5=73221a54230cde1dbf9e35a5b98195b5CAS | 18336027PubMed |
[24] E. B. Veale, D. O. Frimannsson, M. Lawler, T. Gunnlaugsson, Org. Lett. 2009, 11, 4040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFaku74%3D&md5=5553c2bb36276140bb1434ef2832922eCAS | 19681640PubMed |
[25] J. F. Zhang, C. S. Lim, S. Bhuniya, B. R. Cho, J. S. Kim, Org. Lett. 2011, 13, 1190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFamtrY%3D&md5=73fc384bb90d173c6a77db7fdeec7aecCAS | 21299199PubMed |
[26] P. Zhao, J. B. Jiang, B. Leng, H. Tian, Macromol. Rapid Commun. 2009, 30, 1715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yltr3J&md5=ce47176c64c6c98ca30ef58b15e2d2a0CAS | 21638442PubMed |
[27] V. B. Bojinov, I. P. Panova, Dyes Pigm. 2007, 74, 551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyns7c%3D&md5=7a141ff284028b772c179e7c788f3d09CAS |
[28] I. Grabtchev, T. Philipova, P. Meallier, Dyes Pigm. 1996, 31, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtl2htb8%3D&md5=3dc7c8aed86ac574158dfa74b45d8f39CAS |
[29] G. J.-F. Demets, E. R. Triboni, E. B. Alvarez, G. M. Arantes, P. B. Filho, M. J. Politi, Spectrochim. Acta Part A 2006, 63, 220.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Jiang, J. Tang, Q. Qi, W. Wu, Y. Sun, D. Fu, Dyes Pigm. 2009, 80, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemt7zL&md5=444cb491a98b6b9fc9dda387ee276734CAS |
[31] W. Jiang, Y. Sun, X. Wang, Q. Wang, W. Xu, Dyes Pigm. 2008, 77, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrsLzO&md5=4ba57994ceaa0ac721f337d72dbc0ff1CAS |
[32] A. A. Vasilev, K. DeMey, I. Asselberghs, K. Clays, B. Champagne, S. E. Angelova, M. I. Spassova, C. Li, K. Müllen, J. Phys. Chem. C 2012, 116, 22711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhsL3N&md5=e369b5a7dd9f2f3df9141a532335d6b0CAS |
[33] D. Jacquemin, E. A. Perpète, G. Scalmani, M. J. Frisch, X. Assfeld, I. Ciofini, C. Adamo, J. Chem. Phys. 2006, 125, 164324.
| Crossref | GoogleScholarGoogle Scholar | 17092090PubMed |
[34] D. Jacquemin, E. A. Perpète, G. E. Scuseria, C. Ilaria, C. Adamo, J. Chem. Theory Comput. 2008, 4, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWisrvF&md5=d72e531716aa7020e9bb5d0c0dd1c8beCAS |
[35] M. Guillaume, B. Champagne, F. Zutterman, J. Phys. Chem. A 2006, 110, 13007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFynurrE&md5=f735c9aca8ac76595c9413aec8acbd27CAS | 17134160PubMed |
[36] I. Grabchev, I. Moneva, E. Wolarz, D. Z. Bauman, Naturforsch. 1996, 51a, 1185.
[37] R. Podsiadły, J. Koliǹska, J. Sokołowska, Color. Technol. 2008, 124, 79.
| Crossref | GoogleScholarGoogle Scholar |
[38] R. Kuhn, A. Winterstein, G. Balser, Ber. Dtsch. Chem. Ges. 1930, 63, 3176.
| Crossref | GoogleScholarGoogle Scholar |
[39] M. J. Kamlet, R. W. Taft, J. Chem. Soc., Perkin Trans. 2 1979, 2, 349.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc. 1976, 98, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovFeqtA%3D%3D&md5=85688f43807189d839a212a52dc55c41CAS |
[41] J. M. Abboud, M. J. Kamlet, R. W. Taft, J. Am. Chem. Soc. 1977, 99, 8325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Kqsw%3D%3D&md5=ed31bc1beecc48e795541403498d39d2CAS |
[42] M. J. Kamlet, J. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 1983, 48, 2877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVOgsbc%3D&md5=991d96bf38bc2c38db4c6fb9248d1538CAS |
[43] R. W. Taft, M. J. Kamlet, J. Am. Chem. Soc. 1976, 98, 2886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVGrsbs%3D&md5=067a344c6962ef761b1612e03dc7b62fCAS |
[44] G. S. Brooker, G. Kyers, W. J. Williams, J. Am. Chem. Soc. 1942, 64, 199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38Xht1ehsA%3D%3D&md5=45d76c2b8f86af87e2ddbdb0407415b9CAS |
[45] A. Khosravi, S. Moradian, K. Gharanjig, T. F. Afshar, Dyes Pigm. 2006, 69, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCmsLo%3D&md5=53fe33868ed3258ec11ca6124ba1f517CAS |
[46] M. Okazaki, Y. Suhara, M. Fujiyama, Yuki Gosei Kagaku Kyokaishi (J. Synth. Org. Chem. Jpn.) 1956, 14, 394.[Chem. Abs. 1957, 8050]
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXktlamsA%3D%3D&md5=a34497a58534e2440e12e65e14f0d535CAS |
[47] C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=86e4969afe60876d8f5d343bd37d5233CAS |
[48] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01 2010 (Gaussian, Inc.: Wallingford, CT).