Facile Synthesis of Hierarchical CuO Microspheres and their Gas Sensing Properties for NOx at Room Temperature
Wanzhen Song A , Hongyuan Wu A , Jingchao Wang A , Yufei Lin A , Jiabao Song A , Yu Xie B , Li Li A C D and Keying Shi A DA Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University,Harbin 150080, China.
B Department of Materials Chemistry, Nanchang Hangkong University,Nanchang 330063, China.
C Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
D Corresponding authors. Email: llwjjhlju@sina.cn; shikeying2008@163.com
Australian Journal of Chemistry 68(10) 1569-1576 https://doi.org/10.1071/CH15126
Submitted: 14 March 2015 Accepted: 23 April 2015 Published: 4 June 2015
Abstract
In this research, hierarchical CuO microspheres have been successfully synthesised by a facile reflux method. Scanning electron microscopy results clearly revealed that the hierarchical CuO microspheres were composed of two-dimensional nanosheets. The morphology of the prepared products could be tailored by changing the precursor concentration. The CuO-2 sample shows a higher NOx gas sensing performance with a low detection limit of 0.97 ppm, high gas response of 64.93 %, and short response time of 5.33 s to 97.0 ppm NOx at room temperature. The CuO-2 sensor also presents good selectivity and stability. The significantly improved gas response was concluded to be related to the well aligned microstructures and the improved conductivity of the CuO-2 sample. The unique hierarchical structure allows effective and rapid gas diffusion towards the sensing surfaces. In addition, the sensing mechanism based on the hierarchical CuO microspheres is discussed.
References
[1] S. M. Cui, H. H. Pu, G. H. Lu, Z. H. Wen, E. C. Mattson, C. Hirschmug, M. Gajdardziska-Josifovska, M. Weinert, J. H. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4898.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKmu7fN&md5=57082c9d13be2572f9937b62ac00e21cCAS |
[2] W. J. Yuan, L. Huang, Q. Q. Zhou, G. Q. Shi, ACS Appl. Mater. Interfaces 2014, 6, 17003.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjsrzP&md5=98555031d43b364bd046318391144400CAS |
[3] S. M. Cui, Z. H. Wen, E. C. Mattson, S. Mao, J. B. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska, J. H. Chen, J. Mater. Chem. A 2013, 1, 4462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVCkurY%3D&md5=47232ff0bbaf38626a2058be697c8133CAS |
[4] S.F. Xia, H.C. Zhu, H.T. Cai, J.Q. Zhang, J. Yu, Z.A. Tang, RSC Adv. 2014, 4, 57975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVamtrzI&md5=6b42ec1b97d850c9aa75870d2de9d170CAS |
[5] S. Mao, S. M. Cui, G. H. Lu, K. H. Yu, Z. H. Wen, J. H. Chen, J. Mater. Chem. 2012, 22, 11009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFaqsbo%3D&md5=32b95d6f6b09ff21dfe67101a0041048CAS |
[6] P. L. Wang, Y. M. Fu, B. W. Yu, Y. Y. Zhao, L. L. Xing, X. Y. Xue, J. Mater. Chem. A 2015, 3, 3529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCqsr7N&md5=28459e33ffb52c22030fe5bf69ebac01CAS |
[7] A. Qurashi, E.M. El-Maghraby, T. Yamazaki, Y. Shen, T. Kikuta, J. Alloys Compd. 2009, 481, L35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1aqtbY%3D&md5=e91df1fa75f2b98966113ef78046bb35CAS |
[8] Z. H. Zhou, C. H. Lu, X. D. Wu, X. X. Zhang, RSC Adv. 2013, 3, 26066.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyhu7rO&md5=cc1656b60da6784993d52b7173dd78fcCAS |
[9] B. Pecquenard, F. L. Cras, D. Poinot, O. Sicardy, J. P. Manaud, ACS Appl. Mater. Interfaces 2014, 6, 3413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWhtr0%3D&md5=237415eced7f1083fe50ddf8b15029abCAS | 24521248PubMed |
[10] B. G. Ganga, P. N. Santhosh, J. Alloys Compd. 2014, 612, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaktrjN&md5=e20e5c94c53925230fce93f384c2cd2eCAS |
[11] S. B. Khan, M. Faisal, M. M. Rahman, I. A. Abdel-Latif, A. A. Ismail, K. Akhtar, A. Al-Hajry, A. M. Asiri, K. A. Alamry, New J. Chem. 2013, 37, 1098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFSqurw%3D&md5=27ca359cc906a1e8769dedd7e071d0a7CAS |
[12] M. Mashock, K. Yu, S. M. Cui, S. Mao, G. H. Lu, J. H. Chen, ACS Appl. Mater. Interfaces 2012, 4, 4192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKqu7%2FK&md5=d04f5ac33bcc46dae706beacfc106154CAS | 22817670PubMed |
[13] B. J. Hansen, N. Kouklin, G. H. Lu, I. K. Lin, J. H. Chen, X. Zhang, J. Phys. Chem. C 2010, 114, 2440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgsbg%3D&md5=3edf230461bc4c8c7fc2d3115ce9f465CAS |
[14] B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W. W. Xu, B. Lu, Y. Jiang, J. Mater. Chem. A 2013, 1, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSisrnJ&md5=fdbad7c740d01fc14d317b26ed332c28CAS |
[15] S. Yuan, X. L. Huang, D. L. Ma, H. G. Wang, F. Z. Meng, X. B. Zhang, Adv. Mater. 2014, 26, 2273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyksLc%3D&md5=ea51fb71f380dbde3c441f2833feb1b8CAS | 24443100PubMed |
[16] M. Breedon, S. Zhuiykov, N. Miura, Mater. Lett. 2012, 82, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOgs7g%3D&md5=42daa550b733c1eff55e4d7e9e124957CAS |
[17] X. P. Li, Y. Wang, Y. Lei, Z. Y. Gu, RSC Adv. 2012, 2, 2302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlu7Y%3D&md5=0fef2612d188e0dd789c5d304391e7e5CAS |
[18] Y. H. Choi, D. H. Kim, S. H. Hong, K. S. Hong, Sens. Actuators B 2013, 178, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFCmsL8%3D&md5=4a5e41f13ff1430f9a80fe03ceb4d996CAS |
[19] R. K. Bedi, I. Singh, ACS Appl. Mater. Interfaces 2010, 2, 1361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKrtbo%3D&md5=d19575a023206dfea2b842a6bdcf77c5CAS | 20402466PubMed |
[20] C. W. Zou, J. Wang, F. Liang, W. Xie, L. X. Shao, D. J. Fu, Curr. Appl. Phys. 2012, 12, 1349.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. J. Park, N. J. Choi, H. Kang, M. Y. Jung, J. W. Park, K. H. Park, D. S. Lee, Sens. Actuators B 2014, 203, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kmu73N&md5=a0fc7e0df78e84519573e1988b777803CAS |
[22] X. L. Gou, G. X. Wang, J. Yang, J. Park, D. Wexler, J. Mater. Chem. 2008, 18, 965.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlars7k%3D&md5=a51fc373b311462da934e9e4453e7a72CAS |
[23] H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 2012, 161, 594.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbc%3D&md5=97b0c8c144179e1520b6b0463047306cCAS |
[24] J. M. Xu, J. Zhang, B. B. Wang, F. Liu, J. Alloys Compd. 2015, 619, 361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFGltbvK&md5=55f518dda3409277b915087d41a77ccdCAS |
[25] P. Rai, W. K. Kwak, Y. T. Yu, ACS Appl. Mater. Interfaces 2013, 5, 3026.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVyjtrc%3D&md5=9c868359bccc0866a88627304088584cCAS | 23517337PubMed |
[26] L. Li, M. Liu, S. J. He, W. Chen, Anal. Chem. 2014, 86, 7996.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFChur3F&md5=5eb04392bdb97343cadec8de630881bdCAS | 25011608PubMed |
[27] C. Yang, F. Xiao, J. D. Wang, X. T. Su, J. Colloid Interface Sci. 2014, 435, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2msrbP&md5=e19e079912aeb675d6b9d54218e0f8b9CAS | 25217728PubMed |
[28] N. H. Hung, N. D. Thanh, N. H. Lam, N. D. Dien, N. D. Chien, D. D. Vuong, Mater. Sci. Semicond. Process. 2014, 26, 18.
| Crossref | GoogleScholarGoogle Scholar |
[29] Y. Qin, F. Zhang, Y. Chen, Y. J. Zhou, J. Li, A. W. Zhu, Y. P. Luo, Y. Tian, J. H. Yang, J. Phys. Chem. C 2012, 116, 11994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWqsrs%3D&md5=57161412913f67e37126cde0020f2496CAS |
[30] N. D. Hoa, N. V. Quy, H. Jung, D. Kim, H. Kim, S. K. Hong, Sens. Actuators B 2010, 146, 266.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. Y. Yan, X. Q. Tian, J. Sun, F. G. Ma, J. Mater. Sci.: Mater. Electron. 2015, 26, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOktbvP&md5=c5eacfdf7472351eb5dcd521e61a8b11CAS |
[32] Y. Zeng, T. Zhang, H. T. Fan, W. Y. Fu, G. Y. Lu, Y. M. Sui, H. B. Yang, J. Phys. Chem. C 2009, 113, 19000.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CrsrzJ&md5=a62903645928149969a309d1f3bebbd7CAS |
[33] F. L. Meng, N. N. Hou, S. Ge, B. Sun, Z. Jin, W. Shen, L. T. Kong, Z. Guo, Y. F. Sun, H. Wu, C. Wang, M. Q. Li, J. Alloys Compd. 2015, 626, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVygt7vI&md5=4d2f0bd9a1d6154000d1ddc7e2729cdaCAS |
[34] X. M. Xu, P. L. Zhao, D. W. Wang, P. Sun, L. You, Y. F. Sun, X. S. Liang, F. M. Liu, H. Chen, G. Y. Lu, Sens. Actuators B 2013, 176, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKlsQ%3D%3D&md5=430c9508ed9e1252fc40042d4a063444CAS |
[35] Y. Zhang, X. L. He, J. P. Li, H. G. Zhang, X. G. Gao, Sens. Actuators B 2007, 128, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yltL%2FN&md5=de6800e1d9eafa51487184310aed413cCAS |
[36] D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D. J. Yang, E. Longo, H. L. Tuller, J. A. Varela, Adv. Funct. Mater. 2013, 23, 1759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Squ77K&md5=49aeb871af67c8ae665e92542d346303CAS |
[37] Y. Yang, C. G. Tian, J. C. Wang, Li. Su, K. Y. Shi, W. Zhou, H. G. Fu, Nanoscale 2014, 6, 7369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVansrzN&md5=4af0f5dfabee24cf9a4677a4baeb0936CAS | 24872200PubMed |
[38] Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen, J. M. Ma, Nanoscale 2013, 5, 10916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OrsLbO&md5=5495eb007afbdb03a7ba6a757fae5dcaCAS | 24056921PubMed |
[39] L. Q. Liu, K. Q. Hong, T. T. Hu, M. X. Xu, J. Alloys Compd. 2012, 511, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlakt7jF&md5=3e28c20efe394a014750d474abd77423CAS |
[40] D. Q. Gao, G. J. Yang, J. Y. Li, J. Zhang, J. J. Zhang, D. S. Xue, J. Phys. Chem. C 2010, 114, 18347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhtrrO&md5=4520d48c58f976d72732b94973bdf084CAS |
[41] Y. L. Shen, M. L. Guo, X. H. Xia, G. S. Shao, Acta Mater. 2015, 85, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1eh&md5=323c141cf1fee78049842c1c997ec871CAS |
[42] S. Sunkara, V. K. Vendra, J. H. Kim, T. Druffel, M. K. Sunkara, Catal. Today 2013, 199, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFWjsLs%3D&md5=b3294a6f0fcbf7ecfdc2d94b2c864c8cCAS |
[43] K. Nakaoka, J. Ueyama, K. Ogura, J. Electrochem. Soc. 2004, 151, C661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlelu7c%3D&md5=72ceb7d27f9dacbe44c5a8e32ce24930CAS |
[44] F. Bayansal, B. Şahin, M. Yüksel, N. Biyikli, H. A. Çetinkara, H. S. Güder, J. Alloys Compd. 2013, 566, 78.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFCht78%3D&md5=8ba6e6b4ee6bb5faa7aad83ceef2015cCAS |
[45] C. Yang, F. Xiao, J. D. Wang, X. T. Su, Sens. Actuators B 2015, 207, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVers7bF&md5=1bbff6559a3abcf8bfc1498a12193ceeCAS |
[46] M. R. Alenezi, S. J. Henley, N. G. Emerson, S. R. P. Silva, Nanoscale 2014, 6, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2hs7vF&md5=c5ec6e2ec7269ec94edbc8054aef1949CAS | 24186303PubMed |
[47] R. J. Zou, G. J. He, K. B. Xu, Q. Liu, Z. Y. Zhang, J. Q. Hu, J. Mater. Chem. A 2013, 1, 8445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqurjI&md5=aff0e42b81fdeb905f3c4c431cfc8438CAS |
[48] X. W. Li, W. Feng, Y. Xiao, P. Sun, X. L. Hu, K. Shimanoe, G. Y. Lu, N. Yamazoe, RSC Adv. 2014, 4, 28005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgtr3E&md5=4fbae6fbac6aba47ff780f902c8d98efCAS |
[49] L. L. Wang, T. Fei, Z. Lou, T. Zhang, ACS Appl. Mater. Interfaces 2011, 3, 4689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaku7nK&md5=4b7e9a10675284aedb64b8bfc29d165eCAS |
[50] S. Park, S. An, H. Ko, C. Jin, C. Lee, ACS Appl. Mater. Interfaces 2012, 4, 3650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Gisrs%3D&md5=f61c681d99a533c4a547b172ce5f2dc7CAS | 22746969PubMed |