Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Thermoregulated Aqueous Biphasic Catalysis of Sonogashira Reactions

Xiaohua Zhao A C , Xiang Liu B and Ming Lu B C
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

B School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

C Corresponding authors. Email: zhao12_19@163.com; liuxiang8868@126.com

Australian Journal of Chemistry 68(10) 1614-1617 https://doi.org/10.1071/CH15123
Submitted: 12 March 2015  Accepted: 4 May 2015   Published: 1 June 2015

Abstract

A water-based thermoregulated system for Pd-catalyzed Sonogashira reactions is presented, which allows for not only a highly efficient homogeneous catalytic reaction, but also an easy separation/recovery of the catalyst. The novel catalytic system exhibits high efficiency and excellent reusability. In addition, the Sonogashira reactions are performed with Pd(OAc)2 without a copper co-catalyst.


References

[1]  A. Behr, J. Leschinski, Green Chem. 2009, 11, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2itL8%3D&md5=c12d89bbdceba1d5c35063d2fefe15b7CAS |

[2]  T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. – Eur. J. 2009, 15, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtb0%3D&md5=dfb4d4936629515c1e862ef0832ee782CAS | 19086042PubMed |

[3]  A. Dumrath, X. F. Wu, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 8988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtr%2FJ&md5=ffa51efff8ca022c08b5a05ea1b2d01fCAS |

[4]  M. Pagliaro, V. Pandarus, R. Ciriminna, ChemCatChem 2012, 4, 432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVyhu7c%3D&md5=50f51c69b3f38ec54d1243c2b40d162dCAS |

[5]  P. F. Li, J. S. Moore, K. F. Jensen, ChemCatChem 2013, 5, 1729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFSisrY%3D&md5=1006badfc2c68207f95abe74b3cb2c39CAS |

[6]  J. O. Woo, J. E. Park, J. S. Han, Appl. Organomet. Chem. 2014, 28, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12rtg%3D%3D&md5=ba82b32e1a49e33568a357fa92fe4126CAS |

[7]  A. Shaabani, M. Mahyari, J. Mater. Chem. A 2013, 1, 9303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOis77M&md5=0469a5475d6a13b34db7f5d844a77e38CAS |

[8]  D. Sengupta, J. Saha, G. De, B. Basu, J. Mater. Chem. A 2014, 2, 3986.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislGktbY%3D&md5=1b83ce7a91840ccb53d3814c8f293656CAS |

[9]  H. Woo, K. Lee, J. C. Park, K. H. Park, New J. Chem. 2014, 38, 5626.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKrurjP&md5=0b5fa98a02ca4f24658791dcfec1d84dCAS |

[10]  T. S. Huang, Y. H. Wang, J. Y. Jiang, Z. L. Jin, Chin. Chem. Lett. 2008, 19, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlGmsLw%3D&md5=b6bb453fcc8a07a9f198bb92e164fde1CAS |

[11]  K. X. Li, Y. H. Wang, J. Y. Jiang, Z. L. Jin, Catal. Commun. 2010, 11, 542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2hs7c%3D&md5=bf6245155559782b88b14617bddda64dCAS |

[12]  H. Azoui, K. Baczko, S. Cassel, C. Larpent, Green Chem. 2008, 10, 1197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gu7bM&md5=2a635fece1e99b960f2863228d8bf256CAS |

[13]  N. Liu, C. Liu, B. Yan, Z. L. Jin, Appl. Organomet. Chem. 2011, 25, 168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslygtbs%3D&md5=7ba012d3aff4d41e1c3a6c5e7461487aCAS |

[14]  N. Liu, C. Liu, Z. L. Jin, J. Organomet. Chem. 2011, 696, 2641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFWgtbc%3D&md5=632eaab1caa6000785f2986407ffb6f3CAS |

[15]  Y. Zeng, Y. Wang, Y. Xu, Y. Song, Z. Jin, Catal. Lett. 2013, 143, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2rsLrM&md5=dba3b9ed24622bcd42edfedb9a0dab68CAS |

[16]  D. E. Bergbreiter, P. L. Osburn, A. Wilson, E. M. Sink, J. Am. Chem. Soc. 2000, 122, 9058.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Kgu7c%3D&md5=c375646d221ea1b1334dc4f44eefaf9bCAS |

[17]  S. Kim, K. Yamamoto, K. Hayashi, K. Chiba, Tetrahedron 2008, 64, 2855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlaltLc%3D&md5=612ebf0a1b8c1f3a8263a42eb0713990CAS |

[18]  N. Lu, Y. C. Chen, W. S. Chen, T. L. Chen, S. J. Wu, J. Organomet. Chem. 2009, 694, 278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1er&md5=0d2f258fd77f37fb9974855f6bc4fd45CAS |

[19]  R. A. Sheldon, Green Chem. 2005, 7, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2lt7o%3D&md5=9a6f57c408afb7d682663c6edceaadbcCAS |

[20]  N. Liu, C. Liu, Q. Xu, Z. L. Jin, Eur. J. Org. Chem. 2011, 4422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGqsr8%3D&md5=5ecf0247bbb4521bc9450309536d21d2CAS |

[21]  Y. L. Hu, Q. Ge, Y. He, M. Lu, ChemCatChem 2010, 2, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks12qsbs%3D&md5=463e5f91945c6ccf25405f41a71e8625CAS |

[22]  H. Z. Zhi, C. Lu, Q. Zhang, J. Luo, Chem. Commun. 2009, 2878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslyqurk%3D&md5=ff07f6fe88995a6c369f380f3daa0028CAS |

[23]  Y. L. Hu, Y. X. Ma, M. Lu, Can. J. Chem. 2011, 89, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFemtLg%3D&md5=59709682b690ae09ccc53d04cc4ed9d9CAS |

[24]  X. Liu, K. Yao, Y. L. Hu, M. Lu, J. Chem. Res. 2011, 35, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Krtbo%3D&md5=616bd0514f9ce03bc62e49b5489513e3CAS |

[25]  Y. L. Hu, J. Hui, J. Zhu, M. Lu, New J. Chem. 2011, 35, 292.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  W. Kirmse, Angew. Chem. Int. Ed. 2010, 49, 8798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtrzE&md5=ef4edafe4f2d5d8410360f54561d42abCAS |

[27]  A. John, P. Ghosh, Dalton Trans. 2010, 39, 7183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyntro%3D&md5=11a082e38f774c32c13ea36095b1e36dCAS | 20495733PubMed |

[28]  L. Benhamou, E. Chardon, G. Lavigne, V. Cesar, Chem. Rev. 2011, 111, 2705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1OnsQ%3D%3D&md5=0b8864f1a1e14f63aad1b6c945417538CAS | 21235210PubMed |

[29]  J. W. Kim, J. H. Kim, D. H. Lee, Y. S. Lee, Tetrahedron Lett. 2006, 47, 4745.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyktr8%3D&md5=7c1016c378c4e0688c7c2c14245ebcbaCAS |

[30]  F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 2011, 30, 684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVertb0%3D&md5=f25e218a12d505dfd7806c10f50b4e2fCAS |

[31]  M. V. Khedkar, T. Sasaki, B. M. Bhanage, ACS Catal. 2013, 3, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntValtg%3D%3D&md5=7074adca8f27c33a8666bc590fd7d035CAS |