A Carbon Nanodots-Based Fluorescent Turn-On Probe for Iodide
Qi Wang A B and Yuehuan Wu AA Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, Shanxi 030008, China.
B Corresponding author. Email: wangqitit@163.com
Australian Journal of Chemistry 68(10) 1479-1484 https://doi.org/10.1071/CH15066
Submitted: 3 December 2014 Accepted: 12 March 2015 Published: 28 April 2015
Abstract
The human body requires iodine to develop and maintain proper metabolic balance. Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability. Small amounts of iodine are needed for good health. However, large doses can eventually cause iodide goitre, hypothyroidism or myxedema. Children are especially sensitive to the effects of iodine. Because humans can be exposed to iodide via several different food chains, the development of on-site, real-time and reliable sensors for iodide is of great interest to ensure early diagnosis and improve management. We propose here a simple and low cost, yet sensitive and selective fluorescent ‘turn-off-on’ assay for rapid determination of iodide based on a combined carbon nanodots (CDs) and Hg2+ system. The fluorescence of CDs that was quenched by Hg2+ was restored and ‘turned on’ in the presence of iodide, which triggered a competitive reaction among CDs, Hg2+ and iodide. The recovered fluorescence intensity varied linearly with the concentration of iodide in the range of 0.05–5 μmol L–1, with a limit of detection as low as 46 nmol L–1. This approach shows excellent selectivity for iodine over the other anions.
References
[1] C. D. Geddes, Meas. Sci. Technol. 2001, 12, R53.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVyrs7o%3D&md5=3c8c7059a42d89f797ebd34c51e9165dCAS |
[2] W. Y. Lin, L. Yuan, X. W. Cao, C. C. Bin, Y. M. Feng, Sens. Actuators, B 2009, 138, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOhs7w%3D&md5=4139026e9dd7c590dd0afc662e0d907fCAS |
[3] S. Chandramouleeswaran, B. Vijayalakshmi, S. Kartihkeyan, T. P. Rao, C. S. P. Iyer, Microchim. Acta 1998, 128, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtV2gtQ%3D%3D&md5=1b9bdc50b945e50f4499593a5f04542fCAS |
[4] G. J. Kahaly, H. P. Dienes, J. Beyer, G. Hommel, Eur. J. Endocrinol. 1998, 139, 290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFOlsro%3D&md5=9bd01ca78a1a4c12d0b20194b82407ebCAS | 9758438PubMed |
[5] X. J. Wang, C. H. Zhang, L. H. Feng, L. W. Zhang, Sens. Actuators, B 2011, 156, 463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms12iu70%3D&md5=f4e501b1a43e33baf9a3b56d4ffce004CAS |
[6] M. Tian, H. Ihmels, Chem. Commun. 2009, 3175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Wis7o%3D&md5=b8dece4878b631e9c255861368506ddeCAS |
[7] K. R. Rathikrishnan, V. K. Indirapriyadharshini, S. Ramakrishna, R. Murugan, Tetrahedron 2011, 67, 4025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFajs74%3D&md5=b103326a4009065e4199106125b9271cCAS |
[8] K. Ito, T. Ichihara, H. Zhuo, K. Kumamoto, A. R. Timerbaev, T. Hirokawa, Anal. Chim. Acta 2003, 497, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Ogsr0%3D&md5=86f192b94ce6fe3bd0886b6f5eb3c1ffCAS |
[9] K. Yokota, K. Fukushi, S. Takeda, S. I. Wakida, J. Chromatogr. A 2004, 1035, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVGju7k%3D&md5=aab0f5d1b475d92a7a8f4170e3fcbb6aCAS | 15117084PubMed |
[10] T. Masadome, R. Sonoda, Y. Asano, Talanta 2000, 52, 1123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVGjtbo%3D&md5=0a5de8fb93d3068ecc32511ee72e8d12CAS | 18968074PubMed |
[11] A. Malon, A. Radu, W. Qin, Y. Qin, A. Ceresa, M. Maj-Zurawska, E. Bakker, E. Pretsch, Anal. Chem. 2003, 75, 3865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlWrsbc%3D&md5=a1e3e9a91f838dd4f1efe48a6e288366CAS | 14572055PubMed |
[12] F. Schone, C. Zimmermann, G. Quanz, G. Richter, M. Leiterer, Meat Sci. 2006, 72, 365.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnsVahtw%3D%3D&md5=041e1ab1cd71f172f8e48502c9358fc8CAS | 22061566PubMed |
[13] E. H. Larsen, M. B. Ludwigsen, J. Anal. At. Spectrom. 1997, 12, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVSjs7w%3D&md5=263aaaf49b6088ebb2cf91ee59dafed9CAS |
[14] H. Kim, J. Kang, Tetrahedron Lett. 2005, 46, 5443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFCltb0%3D&md5=d5607ccbfa06e80f8aae0834fcc2a5e4CAS |
[15] N. Singh, D. O. Jang, Org. Lett. 2007, 9, 1991.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Kms7s%3D&md5=bdd67060a4256a15a393bc0449c52947CAS | 17439227PubMed |
[16] H. A. Ho, M. Leclerc, J. Am. Chem. Soc. 2003, 125, 4412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGlt7o%3D&md5=32059fb6e5d61139fb32b823a31d82a9CAS | 12683798PubMed |
[17] M. Vetrichelvan, R. Nagarajan, S. Valiyaveettil, Macromolecules 2006, 39, 8303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyntbjL&md5=28f6e01ce3d7e7b894eca0bdc5f83fc4CAS |
[18] A. Corma, M. S. Galletero, H. García, E. Palomares, F. Rey, Chem. Commun. 2002, 1100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFKgtLw%3D&md5=4acb3ad43a973d6b3eff3b375ee2c431CAS |
[19] H. Okamoto, H. Konishi, M. Kohno, K. Satake, Org. Lett. 2008, 10, 3125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2rs7o%3D&md5=da5558b716db8ba80b7c5af73df316f2CAS | 18576662PubMed |
[20] H. B. Li, C. P. Han, L. Zhang, J. Mater. Chem. 2008, 18, 4543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCgtbbE&md5=f8a87bddaa866e6d917b43b352879109CAS |
[21] K. Rurack, U. Resch-Genger, Chem. Soc. Rev. 2002, 31, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyjtrk%3D&md5=113b90a01df269cd7394b9c12be831d7CAS | 12109205PubMed |
[22] W. Y. Lin, L. Yuan, X. W. Cao, B. B. Chen, Y. M. Feng, Sens. Actuators, B 2009, 138, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOhs7w%3D&md5=4139026e9dd7c590dd0afc662e0d907fCAS |
[23] J. Liu, Q. Lin, Y.-M. Zhang, T.-B. Wei, Sens. Actuators, B 2014, 196, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1ChtLc%3D&md5=3489282f91db827622f624d663c0e442CAS |
[24] S. W. Chen, P. P. Wang, C. M. Jia, Q. Lin, W. B. Yuan, Spectrochim. Acta, Part A 2014, 133, 223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2qurnE&md5=60c0de11086678d21a54b2add861f391CAS |
[25] Y. Xiao, Y. Zhang, H. M. Huang, Y. Y. Zhang, B. L. Du, F. Chen, Q. Zheng, X. X. He, K. M. Wang, Talanta 2015, 131, 678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKnsbzO&md5=0e81c4cb57fec64e9ccf3211fad2ace0CAS | 25281159PubMed |
[26] X. Y. Xu, R. Ray, Y. L. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1KmtL0%3D&md5=501f944a2d4388d3633198bfafd5980eCAS |
[27] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Hamaff, X. Wang, H. Wang, P. Q. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veea, S. Xie, J. Am. Chem. Soc. 2006, 128, 7756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehur0%3D&md5=d0a46c948c49712dfef42337150d48a3CAS | 16771487PubMed |
[28] S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed. 2010, 49, 6726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsbnI&md5=1d35ccd0b33ab89019d72c6c8e0c587aCAS |
[29] Q. L. Zhao, Z. L. Zhang, B. H. Huang, J. Peng, M. Zhang, D. W. Pang, Chem. Commun. 2008, 5116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12nsrfK&md5=dbe4ad7e964bfdfe37837d239af08995CAS |
[30] S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, Y. C. Yu, J. Am. Chem. Soc. 2005, 127, 17604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gju7fM&md5=d473a46b1150f442d43441da3e5fa410CAS | 16351080PubMed |
[31] Q. Li, T. Y. Ohulchanskyy, R. L. Liu, K. Koynov, D. Q. Wu, A. Best, R. Kumar, A. Bonoiu, P. N. Prasad, J. Phys. Chem. C 2010, 114, 12062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVeiuro%3D&md5=b391d82b42a574ed59803b28c8eabde3CAS |
[32] H. Goncalves, P. A. S. Jorge, J. R. A. Fernandes, J. C. G. E. da Silva, Sens. Actuators, B 2010, 145, 702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOiu7k%3D&md5=edaa00252c5eaf5affc505f77b89b24cCAS |
[33] Y. Q. Dong, R. X. Wang, G. L. Li, C. Q. Chen, Y. W. Chi, G. N. Chen, Anal. Chem. 2012, 84, 6220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlSgtLg%3D&md5=307e4cb6bb64bd5d163845ea25c3c963CAS |
[34] K. G. Qu, J. S. Wang, J. S. Ren, X. G. Qu, Chem. – Eur. J. 2013, 19, 7243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFersbc%3D&md5=123f904d370ea10516cdfa592e7f0ec3CAS |
[35] H. X. Zhao, L. Q. Liu, Z. D. Liu, Y. Wang, X. J. Zhao, C. Z. Huang, Chem. Commun. 2011, 47, 2604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVCmsb4%3D&md5=7207e809a288bc7531097dd9b4f9e626CAS |
[36] Y. Q. Dong, G. L. Li, N. N. Zhou, R. X. Wang, Y. W. Chi, G. N. Chen, Anal. Chem. 2012, 84, 8378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmtb%2FF&md5=52e1d945265d6fe2c64180c8aaaacf12CAS |
[37] Z. X. Wang, C. L. Zheng, Q. L. Li, S. N. Ding, Analyst 2014, 139, 1751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVehtbY%3D&md5=824eb43572f47b3b684838024610bfedCAS | 24496079PubMed |
[38] L. Zhou, Y. H. Lin, Z. Z. Huang, J. S. Ren, X. G. Qu, Chem. Commun. 2012, 48, 1147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOhsA%3D%3D&md5=bbb8888f886f4b2a29ec80f4e02d7e3aCAS |
[39] W. J. Bai, H. Z. Zheng, Y. J. Long, X. J. Mao, M. Gao, L. Y. Zhang, Anal. Sci. 2011, 27, 243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVKktb0%3D&md5=62435b564105aa48a10f4e8dba5aeba7CAS |
[40] W. B. Shi, Q. L. Wang, Y. J. Long, Z. L. Cheng, S. H. Chen, H. Z. Zheng, Y. M. Huang, Chem. Commun. 2011, 47, 6695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVGru78%3D&md5=6fcddc33855b2d102a6f27f2e2bb4c85CAS |
[41] W. B. Lu, X. Y. Qin, S. Liu, G. H. Chang, Y. W. Zhang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, X. P. Sun, Anal. Chem. 2012, 84, 5351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVSnt7s%3D&md5=98aa4af3b4996748e6e2097d7d326883CAS |
[42] H. P. Liu, T. Ye, C. D. Mao, Angew. Chem., Int. Ed. 2007, 46, 6473.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOjs7rM&md5=ea87482237e459439830b5f091d7d9eeCAS |
[43] H. T. Li, X. D. He, Z. H. Kang, H. Huang, T. Liu, J. L. Liu, S. Y. Lian, C. H. A. Tsang, X. B. Yang, S.-T. Lee, Angew. Chem., Int. Ed. 2010, 49, 4430.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyntbw%3D&md5=3cf489ccd94120d0d934404dda128fa6CAS |
[44] S. C. Ray, A. Saha, N. R. Jana, R. Sarkar, J. Phys. Chem. C 2009, 113, 18546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eltrnE&md5=1c7c2602ed337080c4057fc79828b57eCAS |
[45] Q. L. Wang, H. Z. Zheng, Y. J. Long, L. Y. Zhang, M. Gao, W. J. Bai, Carbon 2011, 49, 3134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVWmsb8%3D&md5=a52c34168090e7fc2b905c35bca3eaf9CAS |
[46] Y. M. Long, C. H. Zhou, Z. L. Zhang, Z. Q. Tian, L. Bao, Y. Lin, D. W. Pang, J. Mater. Chem. 2012, 22, 5917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlKgu7c%3D&md5=e4d7ba6f0c5ed052531fe81ef81bb718CAS |
[47] R. L. Liu, D. Q. Wu, S. H. Liu, K. Koynov, W. Knoll, Q. Li, Angew. Chem., Int. Ed. 2009, 48, 4598.
| Crossref | GoogleScholarGoogle Scholar |
[48] B. L. Ma, F. Zeng, F. Y. Zheng, S. Z. Wu, Chem. – Eur. J. 2011, 17, 14844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqtrrF&md5=64838efa3c97eadd6abf51728c7c7a18CAS |
[49] Q. Wang, X. Liu, L. C. Zhang, Y. Lv, Analyst 2012, 137, 5392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqs7jN&md5=08a0c266cda280553aa356b418f7cafcCAS | 23037913PubMed |