Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Properties of Novel Borondipyrromethene (BODIPY)-Tethered Triphenylamine Conjugates

Yucai Wang A B , Junxu Liao B C , Bangying Wang A B , Hongbiao Chen A C , Hongbin Zhao B , Min Peng B and Sujuan Fan B
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Xiangtan University, Hunan 411105, China.

B College of Chemistry and Environmental Engineering, Dongguan University of Technology, Guangdong 523808, China.

C Corresponding authors. Email: liaojunxu503@sina.com; zhaohbhanlf@163.com

Australian Journal of Chemistry 68(10) 1485-1491 https://doi.org/10.1071/CH15026
Submitted: 28 January 2015  Accepted: 12 March 2015   Published: 22 April 2015

Abstract

A series of novel donor–acceptor type borondipyrromethene (BODIPY)-tethered triphenylamine conjugates (BDP4–8) containing one or two BODIPY cores attached to a triphenylamine scaffold at the 4- or 4,4′- positions were successfully synthesised via a mild and effective protocol. Their photophysical and electrochemical properties were investigated. The absorption spectra indicated that the meso-substituted BODIPY with triphenylamine did not give rise to an intense intramolecular charge transfer (ICT) and did not effectively extend the conjugated length compared with substitution at the 2,6- and 3,5-positions as previously reported. It is worth noticing that the asymmetric mono-BODIPY-tethered triphenylamine conjugates (BDP5, BDP7) showed an electronic distribution imbalance due to the special 3D propeller shape of triphenylamine resulting in twisted molecular space configurations. In contrast, the symmetric bis-BODIPY-tethered triphenylamine conjugates (BDP4, BDP6, and BDP8) exhibited a balanced electronic distribution. The photoluminescence spectra of these conjugates exhibited significant Stokes shifts (5300–6700 cm–1), which caused fluorescence emission spectra in near-infrared regions. Cyclic voltammograms reveal that the asymmetric mono-BODIPY-tethered triphenylamine conjugates (BDP5, BDP7) have higher LUMO energy levels and lower HOMO energy levels, thus resulting in larger bandgaps than the bis-BODIPY-tethered triphenylamine ones.


References

[1]  G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Gqs7w%3D&md5=0d2ea4f9a3d9dd6aad1b2101086624a2CAS |

[2]  A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeisbvF&md5=7e24689ad0c6c8358dede3122f494999CAS | 17924696PubMed |

[3]  M. Vincent, E. Beabout, R. Bennett, P. Hewavitharanage, Tetrahedron Lett. 2013, 54, 2050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlKksrk%3D&md5=92e13e88c611a8768c23ec2dd502301bCAS |

[4]  C. Zhao, X. Wang, J. Cao, P. Feng, J. Zhang, Y. Zhang, Y. Yang, Z. Yang, Dyes Pigm. 2013, 96, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKms7vI&md5=76a6852406ff92766ef94b073d86ac3dCAS |

[5]  V. Leen, D. Miscoria, S. Yin, A. Filarowski, J. Molisho Ngongo, M. Van der Auweraer, N. Boens, W. Dehaen, J. Org. Chem. 2011, 76, 8168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wks7vF&md5=2c84a4ef8bbc15dcb4a959340ce43556CAS | 21910467PubMed |

[6]  W. Qin, V. Leen, W. Dehaen, J. Cui, C. Xu, X. Tang, W. Liu, T. Rohand, D. Beljonne, B. V. Averbeke, J. N. Clifford, K. Driesen, K. Binnemans, M. Van der Auweraer, N. Boens, J. Phys. Chem. C 2009, 113, 11731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVentbs%3D&md5=eed8353d86a28e2cbc68bbd380278b47CAS |

[7]  S. Sankaranarayanan, G. Kellner-Weibel, M. de la Llera-Moya, M. C. Phillips, B. F. Asztalos, R. Bittman, G. H. Rothblat, J. Lipid Res. 2011, 52, 2332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaktLvM&md5=6dea0a1b32ceb0c749fa67d611f3b74bCAS | 21957199PubMed |

[8]  Y. Ohsaki, Y. Shinohara, M. Suzuki, T. Fujimoto, Histochem. Cell Biol. 2010, 133, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Olu7Y%3D&md5=8d0e29e03f9bc89edc9e66f4b265f9d5CAS | 20191286PubMed |

[9]  Y. Ikawa, S. Moriyama, H. Furuta, Anal. Biochem. 2008, 378, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFemsb0%3D&md5=46794edb4a242e9d132ace9a0f932ba5CAS | 18455995PubMed |

[10]  I. García-Moreno, D. Zhang, Á Costela, V. Martín, R. Sastre, Y. Xiao, J. Appl. Phys. 2010, 107, 073105.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  O. Altan Bozdemir, S. Erbas-Cakmak, O. O. Ekiz, A. Dana, E. U. Akkaya, Angew. Chem. Int. Ed. 2011, 50, 10907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Slu7fM&md5=fd2f1be12c54d4d024e32d2d942c9a11CAS |

[12]  S. Kolemen, O. A. Bozdemir, Y. Cakmak, G. Barin, S. Erten-Ela, M. Marszalek, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, E. U. Akkaya, Chem. Sci. 2011, 2, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1aisLw%3D&md5=f4c05059aa550855d9a40d96fa68b080CAS |

[13]  S. Kolemen, Y. Cakmak, S. Erten-Ela, Y. Altay, J. Brendel, M. Thelakkat, E. U. Akkaya, Org. Lett. 2010, 12, 3812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSmsL7J&md5=8c6181fdd9e2288fb3d481d8a6031d8cCAS | 20704314PubMed |

[14]  D. Kumaresan, R. P. Thummel, T. Bura, G. Ulrich, R. Ziessel, Chem. – Eur. J. 2009, 15, 6335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFWqsL4%3D&md5=b2a4838174d6104241013663e7060032CAS | 19462381PubMed |

[15]  S. Hattori, K. Ohkubo, Y. Urano, H. Sunahara, T. Nagano, Y. Wada, N. V. Tkachenko, H. Lemmetyinen, S. Fukuzumi, J. Phys. Chem. B 2005, 109, 15368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyntb8%3D&md5=3287c949671ed70ea64310ce9d10a0b0CAS | 16852949PubMed |

[16]  N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1ygsA%3D%3D&md5=55bdffcc1ebb8ee45ca6a4f8824f94ffCAS | 21796324PubMed |

[17]  J. Shao, H. Sun, H. Guo, S. Ji, J. Zhao, W. Wu, X. Yuan, C. Zhang, T. D. James, Chem. Sci. 2012, 3, 1049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Oms78%3D&md5=0d97ebb232e1aa5b303a902c81a7e775CAS |

[18]  Y. Chen, J. Zhao, H. Guo, L. Xie, J. Org. Chem. 2012, 77, 2192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVSntbY%3D&md5=760bddd0b92e80bc48fc55cdc93e633bCAS | 22316087PubMed |

[19]  F. Puntoriero, F. Nastasi, T. Bura, R. Ziessel, S. Campagna, A. Giannetto, New J. Chem. 2011, 35, 948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVSjtr0%3D&md5=f202ca375ead1b4b2104237cf90a45f0CAS |

[20]  A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrurbJ&md5=b203cbaed503e26f0b80d8661f13386fCAS | 23014776PubMed |

[21]  S. G. Awuah, Y. You, RSC Adv. 2012, 2, 11169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2rsb7J&md5=4df6f1607c1989ea15a3df939f8b11a9CAS |

[22]  H. G. Jang, M. Park, J. S. Wishnok, S. R. Tannenbaum, G. N. Wogan, Anal. Biochem. 2006, 359, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KrsbbJ&md5=2ed3b6d0df01df49de40d7c13bfad535CAS | 17081492PubMed |

[23]  R. P. Haugland, The Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 10th edn 2005 (Invitrogen: Eugene, OR).

[24]  Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFyjsLo%3D&md5=b8a583e84d5c70f52182106c499ac6c8CAS | 17428022PubMed |

[25]  Z. Ning, H. Tian, Chem. Commun. 2009, 5483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFelsb7K&md5=989e32801eccdd191f7993c5580c332dCAS |

[26]  H. Zhao, B. Wang, J. Liao, H. Wang, G. Tan, Tetrahedron Lett. 2013, 54, 6019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2mu73N&md5=5ef5098b91c2455d61d0e05c4abca94bCAS |

[27]  X.- C. Li, Y. Liu, M. S. Liu, A. K.-Y. Jen, Chem. Mater. 1999, 11, 1568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVarsrY%3D&md5=fdcad956e59a03dd8bd293dc5d1fc5ccCAS |

[28]  H. Zhao, J. Liao, J. Ning, Y. Xie, Y. Cao, L. Chen, D. Yang, B. Wang, Adv. Synth. Catal. 2010, 352, 3083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsLvK&md5=84d7ad03e6d441ac78022cd372073fc2CAS |

[29]  W. Qin, V. Leen, T. Rohand, W. Dehaen, P. Dedecker, M. Van der Auweraer, K. Robeyns, L. Van Meervelt, D. Beljonne, B. Van Averbeke, J. N. Clifford, K. Driesen, K. Binnemans, N. Boens, J. Phys. Chem. A 2009, 113, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWqsrvM&md5=3fa48a5ce3d9ad6af03c1622d89a37b7CAS | 19099456PubMed |

[30]  L. Zhang, Y. Liu, Z. Wang, M. Liang, Z. Sun, S. Xue, Tetrahedron 2010, 66, 3318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1WgsL0%3D&md5=71eda60342711ef661742e07fb8e0ffdCAS |

[31]  H. Zhao, J. Liao, D. Yang, Y. Xie, Y. Xu, H. Wang, B. Wang, Aust. J. Chem. 2013, 66, 972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ois7rN&md5=be4ef281db77ee8d7eb160df2606a1c3CAS |