Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Crystal Structure Studies towards the Synthesis and Applications of N-heterocyclic Carbene–Metal Complexes Derived from [2.2]Paracyclophane

Wenzeng Duan A C , Yudao Ma B D * , Yanmin Huo A and Qingxia Yao A
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Chemical Engineering, Liaocheng University, Hunan Road No. 1, Liaocheng 252000, China.

B School of Chemistry and Chemical Engineering, Shandong University, Shanda South Road No. 27, Jinan 250100, China.

C School of Chemistry and Chemical Engineering, Taishan University, Tai’an 271021, China.

D Corresponding author. Email: ydma@sdu.edu.cn


Australian Journal of Chemistry 68(10) 1472-1478 https://doi.org/10.1071/CH15002
Submitted: 13 January 2015  Accepted: 9 March 2015   Published: 8 May 2015

Abstract

The crystal structures of six planar chiral N-heterocyclic carbene (NHC) precursors and one NHC–Rh complex derived from [2.2]paracyclophane were described. The NHC–metal complexes were prepared to examine their catalytic activities toward the Rh-catalyzed asymmetric addition of phenylboronic acid to 1-naphthaldehyde. The results were correlated to the single-crystal crystallographic studies. The novel NHC precursor 5 can achieve high catalytic activity in the asymmetric addition of phenylboronic acid to 1-naphthaldehyde.


References

[1]  (a) W. A. Herrmann, L. J. Goossen, C. Köcher, G. R. J. Artus, Angew. Chem., Int. Ed. Engl. 1996, 35, 2805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1ehsQ%3D%3D&md5=480553a35eeaceb4c1b3f238e671ca13CAS |
      (b) D. Enders, H. Gielen, G. Raabe, J. Runsink, J. H. Teles, Chem. Ber. 1996, 129, 1483.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. A. Herrmann, L. J. Goossen, G. R. J. Artus, C. Köcher, Organometallics 1997, 16, 2472.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Enders, H. Gielen, K. Breuer, Tetrahedron: Asymmetry 1997, 8, 3571.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Y. D. Ma, C. Song, C. Ma, Z. Sun, Q. Chai, M. B. Andrus, Angew. Chem., Int. Ed. 2003, 42, 5871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSrsLbK&md5=838f78d983c1eea6619f51317949ac6dCAS |
      (b) M. Fructos, T. R. Belderrain, C. Nicasio, S. P. Nolan, H. Kaur, M. M. Díaz-Requejo, P. J. Pérez, J. Am. Chem. Soc. 2004, 126, 10846.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Martin, S. Kehrli, M. d’Augustin, H. Clavier, M. Mauduit, A. Alexakis, J. Am. Chem. Soc. 2006, 128, 8416.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. B. Selim, Y. Matsumoto, K. Yamada, K. Tomioka, Angew. Chem., Int. Ed. 2009, 48, 8733.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. L. May, J. A. Dabrowski, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 736.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) F. J. Wang, L. J. Liu, W. F. Wang, S. K. Li, M. Shi, Coord. Chem. Rev. 2012, 256, 804.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) L. Han, P. Xing, B. Jiang, Org. Lett. 2014, 16, 3428.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) Y. R. Chen, J. J. Feng, W. L. Duan, Tetrahedron Lett. 2014, 55, 595.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) V. Rozenberg, E. Sergeeva, H. Hopf, in Modern Cyclophane Chemistry (Eds R. Gleiter, H. Hopf) 2004, pp. 435–462 (Wiley-VCH: Weinheim, Germany)
      (b) T. Focken, J. Rudolph, C. Bolm, Synthesis 2005, 3, 429.
      (c) D. X. Wang, Y. D. Ma, F. Y. He, W. Z. Duan, L. Zhao, C. Song, Synth. Commun. 2013, 43, 810.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S. E. Gibson, J. C. Knight, Org. Biomol. Chem. 2003, 1, 1256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Krsrs%3D&md5=21524b1cce07b0caa093ce9deb1130cdCAS | 12929653PubMed |
      (b) T. Focken, G. Raabe, C. Bolm, Tetrahedron: Asymmetry 2004, 15, 1693.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Song, C. Q. Ma, Y. D. Ma, W. H. Feng, S. T. Ma, Q. Chai, M. B. Andrus, Tetrahedron Lett. 2005, 46, 3241.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) W. Z. Duan, Y. D. Ma, H. Q. Xia, X. Y. Liu, Q. S. Ma, J. S. Sun, J. Org. Chem. 2008, 73, 4330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Ghtrs%3D&md5=a23f3ca1d13e7ac32d4f8937d3a6ebffCAS |
      (b) Q. S. Ma, Y. D. Ma, X. Liu, W. Z. Duan, B. Qu, C. Song, Tetrahedron: Asymmetry 2010, 21, 292.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Hong, Y. D. Ma, L. Zhao, W. Z. Duan, F. Y. He, C. Song, Tetrahedron: Asymmetry 2011, 22, 1055.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Z. Duan, Y. D. Ma, B. Qu, L. Zhao, J. Q. Chen, C. Song, Tetrahedron: Asymmetry 2012, 23, 1369.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. Zhao, Y. D. Ma, F. Y. He, W. Z. Duan, J. Q. Chen, C. Song, J. Org. Chem. 2013, 78, 1677.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) W. Z. Duan, Y. D. Ma, F. Y. He, L. Zhao, J. Q. Chen, C. Song, Tetrahedron: Asymmetry 2013, 24, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. J. Arduengo III, A. J. Arduengo III, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCqsb4%3D&md5=e951f4179c4b90af653b6a835d44f444CAS | 11170353PubMed |
      (b) W. A. Herrmann, Angew. Chem., Int. Ed. 2002, 41, 1290.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Liu, Q. Q. Xia, W. Z. Chen, Angew. Chem., Int. Ed. 2009, 121, 5621.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Poyatos, J. A. Mata, E. Peris, Chem. Rev. 2009, 109, 3677.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. Samojłowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Jahnke, F. E. Hahn, Top. Organomet. Chem. 2010, 30, 95.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. Riener, S. Haslinger, A. Raba, M. P. Högerl, M. Cokoja, W. A. Herrmann, F. Kühn, Chem. Rev. 2014, 114, 5215.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  F. Y. He, Y. D. Ma, L. Zhao, W. Z. Duan, J. Q. Chen, C. Song, Org. Lett. 2012, 14, 5436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGmtb%2FJ&md5=89993226e0bd949483113e688bca57d3CAS |

[9]  O. Schuster, L. R. Yang, H. G. Raubenheimer, M. Albrecht, Chem. Rev. 2009, 109, 3445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVSmt7s%3D&md5=669f2e6993aaefcee7d32fdc51c8543eCAS | 19331408PubMed |

[10]  (a) H. M. J. Wang, I. J. B. Lin, Organometallics 1998, 17, 972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFygsA%3D%3D&md5=9d933584dba83073ae61d91c32b59a15CAS |
      (b) A. M. Magill, D. S. McGuinness, K. J. Cavell, G. J. P. Britovsek, V. C. Gibson, A. J. P. White, D. J. Williams, A. H. White, B. W. Skelton, J. Organomet. Chem. 2001, 617–618, 546.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. C. Garrison, W. J. Youngs, Chem. Rev. 2005, 105, 3978.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Wang, S. Liu, G. X. Jin, Organometallics 2004, 23, 6002.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Alcarazo, S. J. Roseblade, A. R. Cowley, R. Fernandez, J. M. Brown, J. M. Lassaletta, J. Am. Chem. Soc. 2005, 127, 3290.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. A. Mata, A. R. Chianese, J. R. Miecznikowski, M. Poyatos, E. Peris, J. W. Faller, R. H. Crabtree, Organometallics 2004, 23, 1253.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Prades, M. Viciano, M. Sanau, E. Peris, Organometallics 2008, 27, 4254.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. P. McGrath, A. H. Hoveyda, Angew. Chem., Int. Ed. 2014, 53, 1910.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Iglesias, D. J. Beetstra, J. C. Knight, L. L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi, I. A. Fallis, Organometallics 2008, 27, 3279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKht7g%3D&md5=fd0a19fb2cbef8cf5088faca6e6e4d87CAS |

[12]  K.-A. Green, P. T. Maragh, K. Abdur-Rashid, A. J. Lough, T. P. Dasgupta, Tetrahedron Lett. 2014, 55, 5085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GkurjK&md5=629d27858d1c754f99dd0976d3e3f3cfCAS |

[13]  A. M. Magill, K. J. Cavell, B. F. Yates, J. Am. Chem. Soc. 2004, 126, 8717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2msbw%3D&md5=e40052a21b62a7878af596daa459e4f1CAS | 15250724PubMed |

[14]  (a) P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy, S. P. Nolan, Organometallics 2005, 24, 6301.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) X. J. Luan, R. Mariz, M. Gatti, C. Costabile, A. Poater, L. Cavallo, A. Linden, R. Dorta, J. Am. Chem. Soc. 2008, 130, 6848.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. F. Straub, M. Wrede, K. Schmid, F. Rominger, Eur. J. Inorg. Chem. 2010, 1907.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Berkessel, S. Elfert, V. R. Yatham, J. M. Neudörfl, N. E. Schlörer, J. H. Teles, Angew. Chem., Int. Ed. 2012, 51, 12370.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) M. E. Günay, N. Özdemir, M. Ulusoy, M. Uçak, M. Dinçer, B. Çetinkaya, J. Organomet. Chem. 2009, 694, 2179.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. A. B. Kantchev, J. Y. Ying, Organometallics 2009, 28, 289.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) T. Nishimura, H. Kumamoto, M. Nagaosa, T. Hayashi, Chem. Commun. 2009, 5713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGns7bL&md5=a58bc13588d6c898360bf69df39c81d1CAS |
      (b) S. Morikawa, K. Michigami, H. Amii, Org. Lett. 2010, 12, 2520.
         | Crossref | GoogleScholarGoogle Scholar |

[17]     (a) G. M. Sheldrick, SHELXL97, Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen, Germany)
         (b) G. M. Sheldrick, SHELXS97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).

[18]  P. van der Sluis, A. L. Spek, Acta Crystallogr., Sect. A 1990, 46, 194.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Crystal data for compound 3: C36H31Br2F3N2O3S, M 788.51, colourless block, orthorhombic, space group P 21 21 21, a 10.932(2), b 12.123(2), c 25.594(5) Å, β 90°, V 3391.9(11) Å3, Z 4, Dc 1.544 Mg m–3, F000 1592, Mo radiation, μ 2.507 mm–1, T 296 K. 16581 data measured, of which 7446 unique (Rint 0.0954), θmax 27.50°, θmin 1.86°. Refinement of 7446 reflections (424 parameters) with I > 2σ(I) converged at final R1 0.0562 (R1 all data 0.2021), wR2 0.0973 (wR2 all data 0.1224), GoF 1.001. The structure was solved by the direct method and refined by the full-matrix least-squares method on F2 using the SHELXTL 97 crystallographic software package.

[20]  Crystal data for compound 5: C36H32BrCl3F2N2, M 714.08, colourless block, orthorhombic, space group P 2(1) 2(1) 2(1), a 11.703(5), b 11.958(5), c 23.535(10) Å, β = 90°, V = 3294(2) Å3, Z 28, Dc 1.446 Mg m–3, F000 1464, Mo radiation, μ 1.532 mm–1, T 273 K. 16468 data measured, of which 5808 unique (Rint 0.0489), θmax 25.02°, θmin 1.91°. Refinement of 5808 reflections (397 parameters) with I > 2σ(I) converged at final R1 0.0421 (R1 all data 0.0780), wR2 0.0843 (wR2 all data 0.0962), GoF 0.990. The structure was solved by the direct method and refined by the full-matrix least-squares method on F2 using the SHELXTL 97 crystallographic software package.