Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Characterization, and Nanocatalysis Application of Core–Shell Superparamagnetic Nanoparticles of Fe3O4@Pd

Ariel L. Cappelletti A , Paula M. Uberman B , Sandra E. Martín B , Martín E. Saleta C , Horacio E. Troiani C , Rodolfo D. Sánchez C , Raúl E. Carbonio D and Miriam C. Strumia A E
+ Author Affiliations
- Author Affiliations

A IMBIV-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.

B INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.

C Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (RN), Argentina.

D INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.

E Corresponding author. Email: mcs@fcq.unc.edu.ar

Australian Journal of Chemistry 68(10) 1492-1501 https://doi.org/10.1071/CH14722
Submitted: 19 December 2014  Accepted: 14 March 2015   Published: 21 May 2015

Abstract

There is a wide number of different synthetic methods to obtain magnetite (Fe3O4) superparamagnetic nanoparticles (SPNPs). However, only a few are able to produce very small and well defined SPNPs with narrow size distribution. We report a modification of the metal-complex decomposition in organic media method in which we replace iron(iii) acetylacetonate (Fe(Acac)3) with an iron–urea complex (Fe-Urea) as metal source for the synthesis. With this modification we were able to obtain small particle sizes with a good control in size distribution. The Fe-Urea complex is easy to prepare with excellent yields. Core–shell nanoparticles are then prepared using palladium(ii) acetylacetonate as a Pd source, to obtain a Pd0 shell stabilised by oleylamine. The core–shell superparamagnetic nanoparticles of Fe3O4@Pd-OA are extensively characterized by FT-IR, powder X-ray diffraction, transmission electron microscopy, UV-vis, thermogravimetric analysis/differential scanning calorimetry, and magnetic susceptibility measurements, and tested in a palladium-catalyzed cross-coupling Suzuki–Miyaura reaction with promising results.


References

[1]  L. Vékás, Adv. Sci. Technol. 2008, 54, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. A. Gómez-Lopera, J. L. Arias, V. Gallardo, A. V. Delgado, Langmuir 2006, 22, 2816.
         | Crossref | GoogleScholarGoogle Scholar | 16519488PubMed |

[3]  G. Frija, O. Clément, E. de Kerviler, Invest. Radiol. 1994, 29, S75.
         | Crossref | GoogleScholarGoogle Scholar | 7928276PubMed |

[4]  S. K. Jones, J. G. Winter, B. N. Gray, Int. J. Hyperthermia 2002, 18, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387nvVCrtQ%3D%3D&md5=2be32df41699e4983425e00ccb6a0849CAS | 11911482PubMed |

[5]  F. J. Lázaro, A. R. Abadía, M. S. Romero, L. Gutiérrez, J. Lázaro, M. P. Morales, Biochim. Biophys. Acta, Mol. Basis Dis. 2005, 1740, 434.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 2012, 112, 2323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFak&md5=974b8918d8d19297bcae4f9ef2953110CAS | 22216932PubMed |

[7]  A. Durdureanu-Angheluta, A. Dascalu, A. Fifere, A. Coroaba, L. Pricop, H. Chiriac, V. Tura, J. Magn. Magn. Mater. 2012, 324, 1679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKjsb8%3D&md5=b14f5a9fbc39c98c4564fbebdc4075cdCAS |

[8]  L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 2012, 112, 5818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOiu77O&md5=bcdcf77dbaa161d4eabed385b154f96aCAS | 23043508PubMed |

[9]  M. Mahmoudi, A. S. Milani, P. Stroeve, Int. J. Biomed. Nanosci. Nanotechnol. 2010, 1, 164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurjE&md5=582eabadef4f66bc90d1ad3b072bd141CAS |

[10]  J. Salado, M. Insausti, L. Lezama, I. Gil De Muro, E. Goikolea, Chem. Mater. 2011, 23, 2879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlymsbg%3D&md5=a71d80654f0e72a8bdecd6ddb6dc95a3CAS |

[11]  R. Massart, IEEE Trans. Magn. 1981, 17, 1247.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Durdureanu-Angheluta, L. Pricop, I. Stoica, C. A. Peptu, A. Dascalu, N. Marangoci, F. Doroftei, H. Chiriac, M. Pinteala, B. C. Simionescu, J. Magn. Magn. Mater. 2010, 322, 2956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWntbo%3D&md5=faa6c7bd18e21f1d6003422e6ada6f03CAS |

[13]  K. Woo, H. J. Lee, J.-P. Ahn, Y. Park, Adv. Mater. 2003, 15, 1761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFCktbY%3D&md5=7a867ae6fb5290c4e097c985b9c7adf8CAS |

[14]  Á. Molnár, A. Papp, K. Miklós, P. Forgo, Chem. Commun. 2003, 2626.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  I. Favier, D. Madec, E. Teuma, M. Gomez, Curr. Org. Chem. 2011, 15, 3127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyhsrzJ&md5=f9e47f96af9f1eda74ec07e215ab7fc8CAS |

[16]  D. Astruc, Inorg. Chem. 2007, 46, 1884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1amsr0%3D&md5=a538e87e0e4110b4cb4301546dc13f6eCAS | 17348719PubMed |

[17]  C. A. Fleckenstein, H. Plenio, Chem. Soc. Rev. 2010, 39, 694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wltbw%3D&md5=c5833c2de9b345382fa80d098fb07af5CAS | 20111788PubMed |

[18]  N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCrtL8%3D&md5=56b1983163dbee2b1dc009a7529000c0CAS |

[19]  F. Bellina, A. Carpita, R. Rossi, Synthesis 2004, 15, 2419.

[20]  S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSmtbg%3D&md5=c6e7430139417bfdf3c178706ed8b419CAS |

[21]  N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGiurg%3D&md5=2dbde3727f92da4d6bcdec200714546cCAS |

[22]  R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVejs7c%3D&md5=6b4c15b843827de3226551fd811dfb5dCAS | 18620434PubMed |

[23]  G. C. Fu, Acc. Chem. Res. 2008, 41, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yrtrvO&md5=3406e976303ec33bbe44cf3b2d2e69bbCAS | 18947239PubMed |

[24]  M. R. Biscoe, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2008, 130, 6686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Ghsbo%3D&md5=e810c9bfec924caca848e94d3e937a4aCAS | 18447360PubMed |

[25]  D. M. Knapp, E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2009, 131, 6961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Cls7s%3D&md5=d11f2cfa989fcf90c3ae587ad82b6091CAS | 19405470PubMed |

[26]  G. A. Molander, B. Canturk, Angew. Chem. Int. Ed. 2009, 48, 9240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhtrzN&md5=71c27e9ac6d427facdccf2cab44ef436CAS |

[27]  W. Tang, A. G. Capacci, X. Wei, W. Li, A. White, N. D. Patel, J. Savoie, J. J. Gao, S. Rodriguez, B. Qu, N. Haddad, B. Z. Lu, D. Krishnamurthy, N. K. Yee, C. H. Senanayake, Angew. Chem. Int. Ed. 2010, 49, 5879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslCnsbc%3D&md5=884809c38274108e8fe79f57000d06e8CAS |

[28]  T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2nu7vP&md5=2c4f4172bc11272a722db16abbb4af1aCAS | 20858009PubMed |

[29]  V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-M. Basset, Chem. Rev. 2011, 111, 3036.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFektro%3D&md5=6acfe1ad6af352380ceadce4a3f2a7a5CAS | 21401074PubMed |

[30]  P. Li, L. Wang, L. Zhang, G. W. Wang, Adv. Synth. Catal. 2012, 354, 1307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFektrg%3D&md5=cb9c65849e6a806f0eb1438823b61cbbCAS |

[31]  K. K. Senapati, S. Roy, C. Borgohain, P. Phukan, J. Mol. Catal. Chem. 2012, 352, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SlsrfO&md5=d3cc2da3593c0e8b589b9620a07bb17bCAS |

[32]  Q. Du, W. Zhang, H. Ma, J. Zheng, B. Zhou, Y. Li, Tetrahedron 2012, 68, 3577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGqt7s%3D&md5=1fe36928c7436183a3736e01b28188a1CAS |

[33]  Z. Gao, Y. Feng, F. Cui, Z. Hua, J. Zhou, Y. Zhu, J. Shi, J. Mol. Catal. Chem. 2011, 336, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFegurc%3D&md5=357278051adbf8ff7fdb398b36f84d4aCAS |

[34]  M.-J. Jin, D.-H. Lee, Angew. Chem. Int. Ed. 2010, 49, 1119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktro%3D&md5=1f9a195e4ba6092c611b3431d0b4310cCAS |

[35]  S. Shylesh, L. Wang, W. R. Thiel, Adv. Synth. Catal. 2010, 352, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlaqt7Y%3D&md5=dfe04252280250f4867e7076644f9f67CAS |

[36]  Y. Liao, L. He, J. Huang, J. Zhang, L. Zhuang, H. Shen, C.-Y. Su, ACS Appl. Mater. Interfaces 2010, 2, 2333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFent7k%3D&md5=b48d5c6c8be6f5e33b608aea419da71aCAS | 20735105PubMed |

[37]  S. Zhao, H. Y. Wu, L. Song, O. Tegus, S. Asuha, J. Mater. Sci. 2009, 44, 926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCqtb%2FF&md5=1f7b5803b98aa7ed03bbd45c97066473CAS |

[38]  S. Asuha, S. Zhao, H. Y. Wu, L. Song, O. Tegus, J. Alloy. Comp. 2009, 472, L23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWjtb4%3D&md5=c820176465f4e5d71dc3cd3b6fe18a7aCAS |

[39]  S. Asuha, S. Zhao, X. H. Jin, M. M. Hai, H. P. Bao, Appl. Surf. Sci. 2009, 255, 8897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Khtr8%3D&md5=7d168a2d7fa72e8e691204dc341cccacCAS |

[40]  O. Carp, L. Patron, L. Diamandescu, A. Reller, Thermochim. Acta 2002, 390, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslCrsbs%3D&md5=8518b805f46675c165905a42ce0b7d67CAS |

[41]  J. Luo, L. Han, N. N. Kariuki, L. Wang, D. Mott, C.-J. Zhong, T. He, Chem. Mater. 2005, 17, 5282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVegt73I&md5=a6d8ecb895054243e78fea3dcfeb49f1CAS |

[42]  J. Xie, C. Xu, N. Kohler, Y. Hou, S. Sun, Adv. Mater. 2007, 19, 3163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7rI&md5=419a895a9d3e7e93312d5167a0332616CAS |

[43]  H. Kang, C. S. Lee, D. Kim, Y. S. Kang, Y. I. Kim, Bull. Korean Chem. Soc. 1998, 19, 408.
         | 1:CAS:528:DyaK1cXislaitbw%3D&md5=a9340782d51eea24e64503541951ef03CAS |

[44]  A. G. Roca, J. F. Marco, P. Morales, C. J. Serna, J. Phys. Chem. C 2007, 111, 18577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlejsb3P&md5=24489f04ce82051e32a80ebd011aab2cCAS |

[45]  G. F. Goya, T. S. Berquó, F. C. Fonseca, M. P. Morales, J. Appl. Phys. 2003, 94, 3520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Chsr4%3D&md5=cdeaa2b959b08691a19fbccfb90720e0CAS |

[46]  E. Lima, E. De Biasi, M. Mansilla Vasquez, M. E. Saleta, F. Effenberg, L. M. Rossi, R. Cohen, H. R. Rechenberg, R. D. Zysler, J. Appl. Phys. 2010, 108, 103919.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  J. Curiale, M. Granada, H. E. Troiani, R. D. Sánchez, A. G. Leyva, P. Levy, K. Samwer, Appl. Phys. Lett. 2009, 95, 043106.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  P. M. Uberman, M. N. Lanteri, S. C. Parajón Puenzo, S. E. Martín, Dalton Trans. 2011, 40, 9229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFagtbbO&md5=17ca0b641686054744e45fd616948392CAS | 21829830PubMed |

[49]  P. M. Uberman, L. A. Pérez, G. I. Lacconi, S. E. Martín, J. Mol. Catal. Chem. 2012, 363–364, 245.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  V. Mazumder, S. Sun, J. Am. Chem. Soc. 2009, 131, 4588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKgtrs%3D&md5=cff023971214c9f904870a6dc40d8910CAS | 19281236PubMed |

[51]  H. M. Rietveld, J. Appl. Cryst. 1969, 2, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksVeisbk%3D&md5=a8ff1dac58f47b2ec87cf60ed0922ac8CAS |

[52]  J. Rodríguez-Carvajal, Physica B 1993, 192, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 2009, 21, 1778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVOjsrg%3D&md5=9f572aac4963384e24520bfddba58ab7CAS |

[54]  F.-Y. Tsai, B.-N. Lin, M.-J. Chen, C.-Y. Mou, S.-T. Liu, Tetrahedron 2007, 63, 4304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktF2hs7Y%3D&md5=2c3d4afcefcd3c99b2a8822fa483259aCAS |

[55]  A. K. Sahoo, T. Oda, Y. Nakao, T. Hiyama, Adv. Synth. Catal. 2004, 346, 1715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslOksQ%3D%3D&md5=64323c605d1e8fc285cfce3a4d3c72b2CAS |