Diethylaluminium Azide: A Versatile Reagent in Organic Synthesis
Serena Monticelli A and Vittorio Pace A BA Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse, 14 A-1090 Vienna, Austria.
B Corresponding author. Email: vittorio.pace@univie.ac.at
Australian Journal of Chemistry 68(5) 703-706 https://doi.org/10.1071/CH14712
Submitted: 15 December 2014 Accepted: 27 January 2015 Published: 2 April 2015
Abstract
The unique properties of diethylaluminium azide – arising from the Lewis acid aluminium and the nucleophilicity of the azide – make it a versatile reagent in organic synthesis. Ring-opening of epoxides, Michael-type additions, synthesis of acyl azides, and functionalizations of fullerene C60 will be discussed. Among the recently described uses of the reagent, particular attention will be devoted to the powerful Sedelmeier’s method to access 1H-tetrazol starting from nitriles.
References
[1] K. Dehnicke, J. Strähle, D. Seybold, J. Müller, J. Organomet. Chem. 1966, 6, 298.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkslelsrw%3D&md5=b9dd9e6d0eabd44788d520a7ee1a3772CAS |
[2] M. I. Prince, K. Weiss, J. Organomet. Chem. 1966, 5, 584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkt12msL8%3D&md5=d1ae3609928e9f8d7bc75647c149582aCAS |
[3] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. Babu Mereyala, B. Frei, Helv. Chim. Acta 1986, 69, 415.
| Crossref | GoogleScholarGoogle Scholar |
[5] F. Benedetti, F. Berti, S. Norbedo, Tetrahedron Lett. 1998, 39, 7971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVShurY%3D&md5=f321b2b2ae1cb82a1939047493cad240CAS |
[6] C. E. Davis, J. L. Bailey, J. W. Lockner, R. M. Coates, J. Org. Chem. 2003, 68, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFSku7g%3D&md5=6c2a857f98e5ecda32cc65285194a1e5CAS | 12515464PubMed |
[7] W. Nagata, M. Yoshioka, T. Terasawa, J. Am. Chem. Soc. 1972, 94, 4672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XkslGgtLg%3D&md5=867c2bc5d57acd902dc418e559fca03eCAS |
[8] B. Y. Chung, Y. S. Park, I. S. Cho, B. C. Hyun, Bull. Korean Chem. Soc. 1988, 9, 269.
| 1:CAS:528:DyaL1MXhtFCgs7Y%3D&md5=6d05c051257ffb179556c7e9cec8592eCAS |
[9] I. Adamo, F. Benedetti, F. Berti, G. Nardin, S. Norbedo, Tetrahedron Lett. 2003, 44, 9095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovF2ltrc%3D&md5=2b892cc53efd15d4a3124c6cf60a089bCAS |
[10] V. H. Rawal, H. M. Zhong, Tetrahedron Lett. 1994, 35, 4947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltleltr8%3D&md5=ad0d2e2a1fe5be2ff05730d3946a5b59CAS |
[11] V. Aureggi, G. Sedelmeier, Angew. Chem. Int. Ed. 2007, 46, 8440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOks7%2FF&md5=4f475e31e5090105f38a4e2669f00d26CAS |
[12] J. Roh, K. Vávrová, A. Hrabálek, Eur. J. Org. Chem. 2012, 6101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGhtLbN&md5=038e5dcae69743bfdc287a87e0427a15CAS |
[13] A. R. Akhmetov, I. R. Yarullin, A. R. Tuktarov, U. M. Dzhemilev, Tetrahedron Lett. 2014, 55, 3747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslyqsLY%3D&md5=04b43c2eea5385d54a7ea82dd29bf67dCAS |