Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Diaryliodonium Salts: Aryl Transfer Reagents for Alkyne Difunctionalization

Felix Hartrampf A B and Henry Toombs-Ruane A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Ludwig-Maximilian-University Munich, Butenandtstrasse 5-13, Munich 81377, Germany.

B These authors contributed equally to this paper.

C Corresponding author. Email: henry.toombs-ruane@cup.uni-muenchen.de

Australian Journal of Chemistry 68(5) 699-702 https://doi.org/10.1071/CH14658
Submitted: 13 November 2014  Accepted: 12 January 2015   Published: 17 March 2015

Abstract

In recent years, hypervalent iodine reagents have emerged as powerful tools in synthesis. This highlight paper describes recent developments in the application of diaryliodonium salts for a variety of transformations. It is shown how the extremely electrophilic nature of these reagents can be exploited to difunctionalize alkynes in cascade reactions to access complex scaffolds.


References

[1]  L. Ackermann, Modern Arylation Methods 2009 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[2]     (a) A. J. Canty, T. Rodemann, J. H. Ryan, in Advances in Organometallic Chemistry (Eds R. West, A. F. Hill, M. J. Fink) 2007, Vol. 55, pp. 279–313 (Academic Press: New York, NY).
      (b) N. R. Deprez, M. S. Sanford, Inorg. Chem. 2007, 46, 1924.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. S. Yusubov, A. V. Maskaev, V. V. Zhdankin, ARKIVOC 2011, 2011, 370.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgurzF&md5=d1db2e25701646e9b5069f9b91546eccCAS | 18986207PubMed |
      (b) A. Duschek, S. F. Kirsch, Angew. Chem. Int. Ed. 2011, 50, 1524.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. D. Hossain, Y. Ikegami, T. Kitamura, J. Org. Chem. 2006, 71, 9903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Clu7vJ&md5=5b25a91d869b5b3d9f68cc7296c601d7CAS | 17168620PubMed |
      (b) M. D. Hossain, T. Kitamura, Tetrahedron 2006, 62, 6955.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Bielawski, B. Olofsson, Chem. Commun. 2007, 2521.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Bielawski, M. Zhu, B. Olofsson, Adv. Synth. Catal. 2007, 349, 2610.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2011, 133, 4260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyhur8%3D&md5=77b8c4ab373b6dfd27284eee1805dbe7CAS | 21388207PubMed |

[6]  S. Tang, P. Peng, P. Zhong, J.-H. Li, J. Org. Chem. 2008, 73, 5476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1CmtL4%3D&md5=825a6af4e718987414b970ecbfa5092dCAS | 18557647PubMed |

[7]  (a) W. Li, J. Zhang, Chem. Commun. 2010, 8839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahu7vE&md5=42a44064ff29a4ef3d273e99a145eec9CAS |
      (b) L. L. Suarez, M. F. Greaney, Chem. Commun. 2011, 7992.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Á. Sinai, Á. Mészáros, T. Gáti, V. Kudar, A. Palló, Z. Novák, Org. Lett. 2013, 15, 5654.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaksLrJ&md5=77517f215eca6515e9aeebacf1d9db3bCAS | 24188109PubMed |

[9]  (a) O. Daugulis, V. G. Zaitsev, Angew. Chem. Int. Ed. 2005, 44, 4046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2gsr0%3D&md5=f0561f99dd8d7d951b435217be2bf44bCAS |
      (b) R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Y. Wang, C. Chen, J. Peng, M. Li, Angew. Chem. Int. Ed. 2013, 52, 5323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFemsrs%3D&md5=d8070ba413c9616078d17260201aa5d2CAS |

[11]  Y. Wang, C. Chen, S. Zhang, Z. Lou, X. Su, L. Wen, M. Li, Org. Lett. 2013, 15, 4794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWktbfE&md5=08878228ad1ffeddca24ebd4a5016e50CAS | 24015723PubMed |

[12]  (a) D. Zhu, Y. Wu, B. Wu, B. Luo, A. Ganesan, F.-H. Wu, R. Pi, P. Huang, S. Wen, Org. Lett. 2014, 16, 2350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlygtLw%3D&md5=5e16a825b1a6fc7518ee4ef620de4ebdCAS | 24742135PubMed |
      (b) Z. Liu, D. Zhu, B. Luo, N. Zhang, Q. Liu, Y. Hu, R. Pi, P. Huang, S. Wen, Org. Lett. 2014, 16, 5600.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, J. Am. Chem. Soc. 2013, 135, 5332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFSrtL4%3D&md5=3babbc2919e127bbf6cc5b2af373da19CAS | 23521626PubMed |

[14]  A. J. Walkinshaw, W. Xu, M. G. Suero, M. J. Gaunt, J. Am. Chem. Soc. 2013, 135, 12532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ymt7fK&md5=bc9f9564597dbc32bd5a026627375726CAS | 23947578PubMed |

[15]  (a) F. Zhang, S. Das, A. J. Walkinshaw, A. Casitas, M. Taylor, M. G. Suero, M. J. Gaunt, J. Am. Chem. Soc. 2014, 136, 8851.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVegsbs%3D&md5=9309559737ceb2c459a0f49e919ae7afCAS | 24905079PubMed |
      (b) J. Peng, C. Chen, J. Chen, X. Su, C. Xi, H. Chen, Org. Lett. 2014, 16, 3776.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) B. S. L. Collins, M. G. Suero, M. J. Gaunt, Angew. Chem. Int. Ed. 2013, 52, 5799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlejtLo%3D&md5=cb631dc8abef5078e77d5c4b2572d2e6CAS |
      (b) Z.-F. Xu, C.-X. Cai, J.-T. Liu, Org. Lett. 2013, 15, 2096.
         | Crossref | GoogleScholarGoogle Scholar |