A Simple, One-Pot Synthesis of Trans-Substituted Spiro [5,5] undecane-1,5,9-triones with Aromatic Aldehydes and Meldrum’s Acid as the Starting Materials
Jingping Ou-Yang A C , Yu Zhao A C , Huailei Jiang B , Lingxin Meng A , Xingshu Li B and Xian Jia A DA Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, China.
B School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
C These two authors contributed equally to this paper.
D Corresponding author. Email: jiaxian206@163.com
Australian Journal of Chemistry 68(10) 1599-1602 https://doi.org/10.1071/CH14655
Submitted: 12 November 2014 Accepted: 28 April 2015 Published: 5 June 2015
Abstract
A simple, one-pot process for the construction of substituted spiro[5,5]undecane-1,5,9-triones using aromatic aldehydes and Meldrum’s acid, and aniline as a catalyst, is reported. Fifteen compounds were synthesized, and the trans/cis ratios were calculated based on 1H NMR analyses of the unpurified products. Quantum mechanical calculations and X-ray diffraction were undertaken to identify the configuration of compound 2a. The proposed mechanisms for these reactions are presented in this paper. In contrast to previous literature, this method endows excellent diastereoselectivity to a series of trans-substituted derivatives. The method is characterized by its simple operation, commercial availability of all materials, mild reaction conditions and moderate-to-good chemical yields.
References
[1] (a) D. R. Zitsane, I. T. Ravinya, I. A. Riikure, Z. F. Tetere, E. Y. Gudrinietse, U. O. Kalei, Russ. J. Org. Chem. 1999, 35, 1457.| 1:CAS:528:DC%2BD3cXksVGrt7g%3D&md5=3c7a64a1a240b46d8174bf32c9c799edCAS |
(b) D. R. Zitsane, I. T. Ravinya, I. A. Riikure, Z. F. Tetere, E. Y. Gudrinietse, U. O. Kalei, Russ. J. Org. Chem. 2000, 36, 496.
(c) F. Wang, Y. Gao, L. Zhang, B. Bai, Y. N. Hu, Z. J. Dong, Q. W. Zhai, H. J. Zhu, J. K. Liu, Org. Lett. 2010, 12, 3196.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Wang, Y. Gao, L. Zhang, J.-K. Liu, Org. Lett. 2010, 12, 2354.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. B. Ramachary, K. Anebouselvy, N. S. Chowdari, C. F. Barbas, J. Org. Chem. 2004, 69, 5838.
| Crossref | GoogleScholarGoogle Scholar |
[2] E. E. Shults, E. A. Semenova, A. A. Johnson, S. P. Bondarenko, I. Y. Bagryanskaya, Y. V. Gatilov, G. A. Tolstikov, Y. Pommier, Bioorg. Med. Chem. Lett. 2007, 17, 1362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVyjt74%3D&md5=ee9b461a6955dd2d814be477f90b3d5fCAS | 17189685PubMed |
[3] D. Pizzirani, M. Roberti, S. Grimaudo, A. Di Cristina, R. M. Pipitone, M. Tolomeo, M. Recanatini, J. Med. Chem. 2009, 52, 6936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtb%2FF&md5=f11f9366af4d10f066eef6ab3fc63cd3CAS | 19764793PubMed |
[4] J.-N. Xiang, P. Nambi, E. H. Ohlstein, J. D. Elliott, Bioorg. Med. Chem. 1998, 6, 695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVOmtLs%3D&md5=8a406be0b78613a7646d7849a57ad842CAS | 9681135PubMed |
[5] (a) D. B. Ramachary, C. F. Barbas, Org. Lett. 2005, 7, 1577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVyqur0%3D&md5=c7ffbd90de8fb83e03a62ebb39de3ec5CAS | 15816756PubMed |
(b) Y. Ma, M. Wang, D. Li, B. Bekturhun, J. Liu, Q. Liu, J. Org. Chem. 2009, 74, 3116.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Pizzirani, M. Roberti, M. Recanatini, Tetrahedron Lett. 2007, 48, 7120.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Joseph, D. B. Ramachary, E. D. Jemmis, Org. Biomol. Chem. 2006, 4, 2685.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. B. Ramachary, N. S. Chowdari, C. F. Barbas, Angew. Chem., Int. Ed. 2003, 42, 4233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvValt7w%3D&md5=5daeea7eba411c7bc3430f76b5eac3caCAS |
[7] M. S. Chande, R. R. Khanwelkar, Tetrahedron Lett. 2005, 46, 7787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyntb7I&md5=bd26aa20b26111097f7875140d578005CAS |
[8] X.-S. Wang, M.-M. Zhang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu, X.-Y. Wei, Z.-M. Zong, Tetrahedron Lett. 2005, 46, 7169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSru7bM&md5=1154172b747f0c0175d437033583cbf2CAS |
[9] B. Jiang, W.-J. Hao, J.-P. Zhang, S.-J. Tu, F. Shi, Org. Biomol. Chem. 2009, 7, 2195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCksr8%3D&md5=192e4a79796c1ccb334b639196ca9884CAS | 19421460PubMed |
[10] N. Hazeri, M. Lashkari, S. García-Granda, L. Torre-Fernández, Aust. J. Chem. 2014, 67, 1656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyjtb3P&md5=3f29659a5b5066e3aeafeaa3223641c1CAS |
[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford CT.)
[12] (a) J. Gauss, Bunsen-Ges. Phys. Chem., Ber. 1995, 99, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFSjs7w%3D&md5=aa321e151f9b09a64d34675b90c5b730CAS |
(b) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=4ff1cf7c6e37a33bf07f3aebb96dfb30CAS |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCnu7c%3D&md5=0334977d330e2194e6e2eb35d876bf52CAS |
(b) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys. 1997, 107, 5016.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. J. Hay, J. Chem. Phys. 1977, 66, 4377.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Raghavachari, G. W. Trucks, J. Chem. Phys. 1989, 91, 1062.
| Crossref | GoogleScholarGoogle Scholar |
(g) R. C. Binning, L. A. Curtiss, J. Comput. Chem. 1990, 11, 1206.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. P. McGrath, L. Radom, J. Chem. Phys. 1991, 94, 511.
| Crossref | GoogleScholarGoogle Scholar |
(i) L. A. Curtiss, M. P. McGrath, J. P. Blaudeau, N. E. Davis, R. C. Binning, L. Radom, J. Chem. Phys. 1995, 103, 6104.
| Crossref | GoogleScholarGoogle Scholar |