Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Bi-Nuclear Metal Complexes of 2,6-Bis(1,4,7-triazacyclonon-1-yl-methylene)pyridine with Zinc(ii), Copper(ii), and Nickel(ii)

Campbell J. Coghlan A C , Eva M. Campi A , Craig M. Forsyth B , Roy W. Jackson A and Milton T. W. Hearn A B D
+ Author Affiliations
- Author Affiliations

A Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Current address: School of Chemistry and Physics, Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, SA 5005, Australia.

D Corresponding author. Email: milton.hearn@monash.edu

Australian Journal of Chemistry 68(7) 1115-1121 https://doi.org/10.1071/CH14618
Submitted: 15 October 2014  Accepted: 24 November 2014   Published: 11 February 2015

Abstract

The coordination chemistry of 2,6-bis(1,4,7-triazacyclonon-1-ylmethyl)pyridine (Lpyx, 1) has been investigated and shown to yield bi-nuclear metal complexes in the presence of zinc(ii), copper(ii), or nickel(ii) ions. The reaction of (Lpyx)·7HCl (2) with Zn(NO3)2 gave the monomeric [Zn2(μ-Cl)2(Lpyx)(H2O)](ClO4)2 (3) in which the ligand encapsulates a Zn2(μ-Cl)2 moiety. Similar treatment of 2 with Cu(NO3)2 gave a bi-nuclear complex cation which exists as a 1 : 1 co-crystal {[Cu(Cl)(Lpyx)Cu(μ-Cl)(Cl)](BF4)(H2O)}2 and {[Cu(Cl)(Lpyx)Cu(μ-Cl)(H2O)](BF4)2(H2O)}2 (4) with two discrete CuII centres bridged by the Lpyx ligand and dimerised through an unsymmetrical Cu2(μ-Cl)2 interaction. Similarly, reaction of 2 with Ni(NO3)2 also gave a dimeric complex {[Ni(Cl)(μ-Cl)(Lpyx)Ni(NO3)(H2O)](PF6)}2 (5) containing two discrete NiII centres with dimerisation occurring through a symmetrical Ni2(μ-Cl)2 interaction. In all cases, the Lpyx ligand binding is unsymmetrical between the two metal centres being tridentate to one and tetradentate to the other through an additional coordination of the pyridyl linker.


References

[1]  F. H. Fry, G. D. Fallon, L. Spiccia, Inorg. Chim. Acta 2003, 346, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFSku70%3D&md5=8f1165d82b2d73bc1507cac09d2b2be5CAS |

[2]  B. Graham, P. Comba, M. T. W. Hearn, L. Spiccia, J. Biol. Inorg. Chem. 2007, 12, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KgtrbE&md5=487eacd787e4d3a5f33e5d60f291389dCAS | 16964506PubMed |

[3]  N. Tanaka, Y. Kobayashi, S. Takamoto, Chem. Lett. 1977, 6, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  K. Wieghardt, I. Tolksdorf, W. Herrmann, Inorg. Chem. 1985, 24, 1230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsVahs7w%3D&md5=2ebc266f60c670e7936ffeccb7a30f10CAS |

[5]  J. L. Sessler, J. W. Sibert, V. Lynch, Inorg. Chem. 1990, 29, 4143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1CnsLw%3D&md5=e396e99f84f4adb6fc94c238a429188fCAS |

[6]  J. L. Sessler, J. W. Sibert, A. K. Burrell, V. Lynch, J. T. Markert, C. L. Wooten, Inorg. Chem. 1993, 32, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFGlsr4%3D&md5=368dfbb51b770ebd67402cb0518182dcCAS |

[7]  X. Zhang, W.-Y. Hsieh, T. N. Margulis, L. J. Zompa, Inorg. Chem. 1995, 34, 2883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1ykurk%3D&md5=4a29d42658c2e124297af4badbc10f01CAS |

[8]  D. Hanke, K. Wieghardt, B. Nuber, R. S. Lu, R. K. McMullan, T. F. Koetzle, R. Bau, Inorg. Chem. 1993, 32, 4300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1emsA%3D%3D&md5=7b6507b564c3752c05be7ccd04a88ed9CAS |

[9]  B. Graham, G. F. Fallon, M. T. W. Hearn, D. C. R. Hockless, G. Lazarev, L. Spiccia, Inorg. Chem. 1997, 36, 6366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1CrtA%3D%3D&md5=d411b5fbee85aeb220c579b59f490746CAS |

[10]  L. J. Farrugia, P. A. Lovatt, R. D. Peacock, J. Chem. Soc., Dalton Trans. 1997, 911.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFCgsrw%3D&md5=b970524ee80e35386f563927e4f74908CAS |

[11]  M. J. Young, J. Chin, J. Am. Chem. Soc. 1995, 117, 10577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVKqtrc%3D&md5=370c63e0c47c11ebb71b8e0c591598c3CAS |

[12]  L. Tang, J. Park, H.-J. Kim, Y. Kim, S. J. Kim, J. Chin, K. M. Kim, J. Am. Chem. Soc. 2008, 130, 12606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChsLvE&md5=89b65f568f6c7312295b4d1ba6ebd518CAS | 18754586PubMed |

[13]  J. L. Sessler, J. W. Sibert, A. K. Burrell, V. Lynch, J. T. Markert, C. L. Wooten, Inorg. Chem. 1993, 32, 4277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlslaqu7g%3D&md5=b738249e777b48df3276c7101591c44dCAS |

[14]  H. R. Chang, H. Diril, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, D. N. Hendrickson, S. S. Isied, J. Am. Chem. Soc. 1988, 110, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVWltg%3D%3D&md5=582fbb77dc9491f4eabe551b9f45fa6fCAS |

[15]  C. J. Coghlan, E. M. Campi, C. M. Forsyth, W. R. Jackson, M. T. W. Hearn, Polyhedron 2014, 69, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSntbo%3D&md5=7b5e07a666f3307a8f5871ba6df83360CAS |

[16]  J. Porath, TrAC, Trends Anal. Chem. 1988, 7, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtVOls78%3D&md5=f5eb82ac31e3d84978b5fad75954ea68CAS |

[17]  R. Gutiérrez, E. M. Martín del Valle, M. A. Galán, Sep. Purif. Rev. 2007, 36, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  E. S. Hemdan, Y. Zhao, E. Sulkowski, J. Porath, Proc. Natl. Acad. Sci. USA 1989, 86, 1811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVyltbY%3D&md5=0822a70e73b58da90769fe35bfa7efa6CAS | 2538816PubMed |

[19]  C. Bazzicalupi, A. Bencini, E. Faggi, A. Garau, C. Glorgi, V. Lippolis, A. Perra, B. Valtancoli, J. Chem. Soc., Dalton Trans. 2006, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVemsL8%3D&md5=8888eae7445f6865698e286ea6394075CAS |

[20]  L. J. Zompa, Inorg. Chem. 1978, 17, 2531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltlKmsbY%3D&md5=c1448deb56921b97b8f20dbb97bea117CAS |

[21]  X. Sheng, X. Guo, X.-M. Lu, G.-Y. Lu, Y. Shao, F. Liu, Q. Xu, Bioconjug. Chem. 2008, 19, 490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1arsg%3D%3D&md5=d4173a578e6c519293ad84ac926c52d3CAS | 18179160PubMed |

[22]  B. Graham, L. Spiccia, B. W. Skelton, A. H. White, D. C. R. Hockless, Inorg. Chim. Acta 2005, 358, 3974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVWltr4%3D&md5=40316b99e9e07132b9c3ca95b18e80baCAS |

[23]  F. H. Fry, L. Spiccia, P. Jensen, B. Moubaraki, K. S. Murray, E. R. T. Tiekink, Inorg. Chem. 2003, 42, 5594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVKks7c%3D&md5=3f62e227b4c5d340bfd6254476084c6eCAS | 12950207PubMed |

[24]  H.-J. Wang, C.-T. Wu, B.-S. Luo, Jiegou Huaxue (Chin. J. Struct. Chem.) 1998, 17, 119.
         | 1:CAS:528:DyaK1cXisVWhu70%3D&md5=50aa11e83b0b8d123169d5903d8e8031CAS |

[25]  S. Mahapatra, S. Kaderli, A. Llobet, Y.-M. Neuhold, T. Palanche, J. A. Halfen, V. G. Young, T. A. Kaden, L. Que, A. D. Zuberbuhler, W. B. Tolman, Inorg. Chem. 1997, 36, 6343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVSi&md5=fc9e81ae726ca49409fbdf32a0a7ba0cCAS |

[26]  M. J. Belousoff, B. Graham, L. Spiccia, Eur. J. Inorg. Chem. 2008, 4133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sru77E&md5=0a6b4b19a48f045065c1ca677148078aCAS |

[27]  J. T. Mooney, D. P. Fredericks, C. Zhang, T. Christensen, C. Jespergaard, C. B. Schiødt, M. T. W. Hearn, Protein Expression Purif. 2014, 94, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyls7vE&md5=2ad4fc0b22cf22c977868db8887db3fdCAS |

[28]  M. Petzold, C. J. Coghlan, M. T. W. Hearn, J. Chromatogr. A 2014, 1351, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslWqsbg%3D&md5=4014e10d2fae06c82af3df95f145cb37CAS | 24891160PubMed |

[29]  J. T. Mooney, D. P. Fredericks, T. Christensen, M. T. W. Hearn, Biotechnol. J. 2014, 9, 1023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2rsrfE&md5=1a27dcdf2ad74234b175dab4076fa69dCAS | 25044545PubMed |

[30]  T. J. Atkins, J. Am. Chem. Soc. 1980, 102, 6364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvFyj&md5=ce9c3f67d2a489c0d57288a0ac2c374eCAS |

[31]  Bruker Apex2 v2.0 2005 (Bruker AXS: Madison, WI).

[32]  SHELX-97, SADABS: G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |