Regioselective Nitration of m-Xylene Catalyzed by Zeolite Catalyst
Xiongzi Dong A B and Xinhua Peng A CA School of Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
B School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China.
C Corresponding author. Email: orgpeng@163.com
Australian Journal of Chemistry 68(7) 1122-1128 https://doi.org/10.1071/CH14551
Submitted: 9 September 2014 Accepted: 1 December 2014 Published: 3 February 2015
Abstract
Nitration with nitric acid and acetic anhydride via acetyl nitrate as nitrating species is efficient with the substrate m-xylene as solvent. Zeolite Hβ with an SiO2/Al2O3 ratio of 500 was found to be the most active of the catalysts tried both in yield and regioselectivity in the nitration of m-xylene. The molecular volume of the reactants was calculated with the Gaussian 09 program at the B3LYP/6–311+G(2d, p) level and compared with the size of the zeolite Hβ channels. A range of other substrates were subjected to the nitrating system under the same conditions as those optimized for m-xylene and excellent selectivity was obtained.
References
[1] G. A. Olah, A. P. Fung, S. C. Narang, J. A. Olah, J. Org. Chem. 1981, 46, 3533.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksl2mu7w%3D&md5=389d48573c0759ce8397777dbf6c066bCAS |
[2] F. J. Waller, A. G. M. Barrett, D. C. Braddock, D. Ramprasad, Chem. Commun. 1997, 613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFygtrg%3D&md5=c730e83bd5e96d95f32e62c2694c8c15CAS |
[3] T. N. Parac-Vogt, K. Binnemans, Tetrahedron Lett. 2004, 45, 3137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVGjt7s%3D&md5=1e3bf12785e32d3dc7a278c07ced6397CAS |
[4] M. L. Kantam, B. M. Choudary, N. S. Kumar, K. V. Ramprasad, J. Mol. Catal. A: Chem. 2005, 229, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Crsb4%3D&md5=51c34092ce44286201cb9b6226c4196dCAS |
[5] S. K. Bharadwaj, S. Hussain, M. Kar, M. K. Chaudhuri, Catal. Commun. 2008, 9, 919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFyhsL4%3D&md5=2da97c2db24f02627d93a2055f0d5af1CAS |
[6] S. K. Bharadwaj, S. Hussain, M. Kar, M. K. Chaudhuri, Appl. Catal. A 2008, 343, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Oiu7w%3D&md5=3c3333b005d7ceb3b683092df96229b0CAS |
[7] P. C. Wang, M. Lu, J. Zhu, Y. M. Song, X. F. Xiong, Catal. Commun. 2011, 14, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKit7vF&md5=df677decab453c93de6ac04c917561abCAS |
[8] X. H. Peng, N. Fukui, M. Mizuta, H. Suzuki, Org. Biomol. Chem. 2003, 1, 2326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWqs74%3D&md5=f355c4ec073f2ccebf9b9c31b0cc33dbCAS |
[9] X. H. Peng, H. Suzuki, Org. Lett. 2001, 3, 3431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFKqtro%3D&md5=2955d24d0156be10c5aaf002334dd02dCAS |
[10] X. H. Peng, H. Suzuki, C. X. Lu, Tetrahedron Lett. 2001, 42, 4357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Kjurk%3D&md5=a8b8e0ddb48405f5220e697589c11b6cCAS |
[11] X. H. Peng, X. Z. Dong, Y. F. Tai, Curr. Org. Chem. 2012, 16, 1549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12ntrw%3D&md5=2fc1919e27221d89073a271cf98dba5aCAS |
[12] K. Smith, T. Gibbins, R. W. Millar, R. P. Claridge, J. Chem. Soc., Perkin Trans. 1 2000, 16, 2753.
| Crossref | GoogleScholarGoogle Scholar |
[13] K. Smith, M. D. Ajarim, G. A. El-Hiti, Catal. Lett. 2010, 134, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsVemsw%3D%3D&md5=dd3cdf01f9785b25fdf230965ffbadc1CAS |
[14] K. Smith, A. Musson, G. A. DeBoos, J. Org. Chem. 1998, 63, 8448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVarsLg%3D&md5=ddb15c7ce9e59a968007f49cc44bcec0CAS |
[15] A. Fischer, K. C. Teo, Can. J. Chem. 1978, 56, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksVWrt7w%3D&md5=8c59c1645d82152f0dfb7549f66d92f1CAS |
[16] V. N. Sheemol, B. Tyagi, R. V. Jasra, J. Mol. Catal. A: Chem. 2006, 252, 194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1yhurY%3D&md5=e626f616e8a69c0954992a44899c57d4CAS |
[17] M. Arshadi, M. Ghiaci, A. Gil, Ind. Eng. Chem. Res. 2010, 49, 5504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsV2kt7c%3D&md5=4da94821211f6d36ef16d359b988aff3CAS |
[18] M. L. Kantam, B. P. C. Rao, B. M. Choudary, K. K. Rao, B. Sreedhar, Y. Iwasawa, T. Sasaki, J. Mol. Catal. A: Chem. 2006, 252, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1ygsrg%3D&md5=9d3d3d08af0f8a7b59ea8c190bf49382CAS |
[19] M. A. Pande, S. D. Samant, Synth. Commun. 2010, 40, 3734.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ltrzJ&md5=722d284bb720ba60c28ef4f96d8fd8f1CAS |
[20] K. Smith, S. Almeer, S. J. Black, Chem. Commun. 2000, 1571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVGjur8%3D&md5=3cc5040156e458eaf7fe8a497ad809daCAS |
[21] K. Smith, S. Almeer, C. Peters, Chem. Commun. 2001, 2748.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1yitrY%3D&md5=457c1296c5a802e4c02683d49e507fc7CAS |
[22] B. M. Choudary, M. Sateesh, M. L. Kantam, K. K. Rao, K. V. R. Prasad, K. V. Raghavan, J. A. Sarma, Chem. Commun. 2000, 1, 25.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Smith, M. H. Alotaibi, G. A. El-Hiti, J. Catal. 2013, 297, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ymt73F&md5=9bd707ad28c7f8ea5646710e1ef0d4d2CAS |
[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2013 ( Gaussian Inc.: Wallingford, CT).
[25] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=79e43ed9bf1d779a643f274495dfae91CAS |
[26] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=8d19467ad8c1702f0ea99c588855f696CAS |