Study of Di- and Polyamines as Activators in the Hot Potash Process for CO2 Capture
Mamshad Ahmad A C , Asha Masohan B and Shyam S. Sawhney AA Department of Chemistry, Uttaranchal College of Science and Technology, Uttarakhand Technical University, Dehradun 248001, India.
B Advanced Gas Separation Area, Separation Process Division, Indian Institute of Petroleum, Dehradun 248001, India.
C Corresponding author. Email: mamshad.ahmad.2012@gmail.com
Australian Journal of Chemistry 68(7) 1042-1050 https://doi.org/10.1071/CH14542
Submitted: 1 September 2014 Accepted: 28 October 2014 Published: 24 February 2015
Abstract
An alarming rise in the atmospheric level of CO2 beyond safe limits has posed an immediate threat to mankind. It has become necessary to look for new economic processes for its capture and for options that can lead to reduction in the cost of existing processes. Hot potassium carbonate is one of the most viable processes. Efforts are continuously being made to improve on the capacity and rate of absorption of this solvent primarily by the use of activators. The latest activators in this category belong mostly to amines like piperazine and other cyclic nitrogen compounds. However, their study so far has been very haphazard. The first systematic study on alkanol monoamine activators was initiated and reported earlier by the authors. This paper extends the study and discusses the effect of some acyclic and cyclic diamines and polyamines as activators on absorption and regeneration of CO2 in K2CO3 solution. The effect of the cyclic or acyclic nature of the molecule, number of substituents, their chemical nature and their spatial arrangement was investigated. The parameters studied for this effect are rich and lean amine loading of CO2, CO2 regenerated and pKa of activators. Interestingly, it was observed that the bulkiness and spatial arrangement of substituents is the most dominant factor. An unsubstituted cyclic diamine (piperazine) performs best in enhancing the absorption capacity of solvent whereas diethylenetriamine is the best in enhancing rate of absorption. The study reveals no specific correlation of pKa value of the amines with their effect as activator.
References
[1] M. Heimann, Science 2010, 327, 1211.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVKls7c%3D&md5=e816dd9bdf4e2e8d3ed791cc492fb8faCAS | 20203040PubMed |
[2] R. S. Haszeldine, Science 2009, 325, 1647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqt7zN&md5=223c1a5ed32fa18b16464585b94e60e2CAS | 19779187PubMed |
[3] M. R. Allen, D. J. Frame, C. Huntingford, C. D. Jones, A. J. Lowe, M. Meinshausen, N. A. Meinshausen, Nature 2009, 458, 1163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1SrtLk%3D&md5=f461e1ca4ef9206e34b1285cfa3353a0CAS | 19407800PubMed |
[4] http://co2now.org/ (accessed 8 July 2014).
[5] http://co2now.org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data.html(accessed 8 July 2014).
[6] J. T. Trevors, M. H. Saier, Water Air Soil Pollut. 2010, 207, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFKhs7o%3D&md5=f42916b00df554645fb3317bfc28fc24CAS |
[7] E. S. Rubin, A. B. Rao, C. Chen, Proceedings of 7th International conference on Greenhouse Gas Control Technologies (GHGT-7) 5–9 September 2004, (Ed. M. Wilson) Vancouver, Canada.
[8] A. G. Darvid, Chemical Engineering 1999, 106, 25.
[9] G. Ondrey, Chemical Engineering 2001, 107, 41.
[10] H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFWguw%3D%3D&md5=a73c213a4a30d5395cf68cd98c3a676dCAS | 14765190PubMed |
[11] A. B. Rao, E. S. Rubin, Environ. Sci. Technol. 2002, 36, 4467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms12qs7g%3D&md5=ba2e7c1ed0591997c21f1f0a23ef220bCAS | 12387425PubMed |
[12] G. T. Rochelle, S. Bishnoi, S. Chi, H. Dang, J. Santos, Research Needs for CO2 Capture from Flue Gas by Aqueous Absorption/Stripping, 2001, Final report for P. O. No. DE-AF26–99FT01029 (U.S. Department of Energy: Pittsburgh, PA).
[13] H. E. Benson, J. H. Field, R. M. Jimeson, Chem. Eng. Prog. 1954, 50, 356.
| 1:CAS:528:DyaG2cXlvVKhsA%3D%3D&md5=9f16c838280682feb56985b794f9947fCAS |
[14] H. E. Benson, J. H. Field, W. P. Haynes, Chem. Eng. Prog. 1956, 52, 433.
| 1:CAS:528:DyaG2sXjvVWi&md5=14b3f557c489e8f6b6c0224ff6858f84CAS |
[15] J. T. Cullinane, Thermodynamics and Kinetics of Aqueous Piperazine with Potassium Carbonate for Carbon Dioxide Absorption, 2005, Ph.D Dissertation, University of Texas, Austin.
[16] A. L. Shrier, P. V. Danckwerts, Ind. Eng. Chem. Fund. 1969, 8, 415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksVSkt7g%3D&md5=3b1d9a282ea15f93068546162b24db85CAS |
[17] S. S. Laddha, P. V. Danckwerts, Chem. Eng. Sci. 1982, 37, 665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvFyrtbw%3D&md5=c6836a79f4364686421a44c7fce18e2cCAS |
[18] V. V. Mahajani, P. V. Danckwerts, Chem. Eng. Sci. 1982, 37, 943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvF2iu78%3D&md5=f496702dab0a973c25c87643cef338baCAS |
[19] V. V. Mahajani, P. V. Danckwerts, Chem. Eng. Sci. 1983, 38, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVOgt78%3D&md5=7320a6047587009f051f009510c3d890CAS |
[20] G. Sartori, D. W. Savage, Ind. Eng. Chem. Fund. 1983, 22, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1aqurk%3D&md5=4ab6908692ec709ecc46981c8ddb14a4CAS |
[21] D. W. Savage, G. Sartori, G. Astarita, Faraday Discuss. Chem. Soc. 1984, 77, 17.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. C. Tseng, W. S. Ho, D. W. Savage, AIChE J. 1988, 34, 922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktl2qt7g%3D&md5=8eb7c71030474c76150e2c7e7d9766a6CAS |
[23] R. Pohorecki, W. Moniuk, Chem. Eng. Sci. 1988, 43, 1677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFGnt74%3D&md5=626fb0f383fb5aabb0c418623048bb57CAS |
[24] P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, P. H. M. Feron, AIChE J. 2003, 49, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOqtg%3D%3D&md5=1dc1a7c25286c78883f0947f4fcbc780CAS |
[25] Z. Tang, W. Fei, Y. Oli, Energy Procedia 2011, 4, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvV2ms7o%3D&md5=8cbe8793204f3496902afeac9b62ff3dCAS |
[26] M. Ahmad, A. Masohan, S. S. Sawhney, Asian Journal of Chemistry 2014, 26, 975.
| 1:CAS:528:DC%2BC2cXlvFCrsrY%3D&md5=6e2e589502fa5fc1537b0bb7f0afbb9cCAS |
[27] D. C. Harris, Quantitative Chemical Analysis 6th Edn 2002 (W. H. Freeman & Co. Ltd.: China Lake, CA).
[28] K. M. Keener, J. D. LaCrosse, J. K. Babson, Poultry Science 2001, 80, 983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFKks7o%3D&md5=6686eb2e76df7ce4e1f05a88f68fba16CAS | 11469666PubMed |
[29] E. F. da Silva, H. F. Svendsen, Ind. Eng. Chem. Res. 2003, 42, 4414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1CjtrY%3D&md5=c3c474f25accb395c54ae9e63de8a492CAS |
[30] F. Khalili, A. Henni, A. L. L. East, J. Chem. Eng. Data 2009, 54, 2914.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFCltrw%3D&md5=258064c7ebab96184735e026b17e3875CAS |
[31] R. McMahan, M. B. J. D. Glennon, Talanta 1986, 33, 927.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. T. Cullinane, G. T. Rochelle, Chem. Eng. Sci. 2004, 59, 3619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Sqtr4%3D&md5=bb842310311d938b2f6941075e89c8e5CAS |
[33] J. T. Cullinane, G. T. Rochelle, Fluid Phase Equilib. 2005, 227, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVClsw%3D%3D&md5=b1b30d2b831fcfd1055c1eab6f5d3c2eCAS |