Synthesis, Electrochemical, and Thermal Properties of [3]Ferrocenophane-Containing Chalcone Derivatives
Haiying Zhao A B , Xueyou Zhu A , Dong Wang A , Shufeng Chen A and Zhanxi Bian A BA Inner Mongolia Key Laboratory of Fine Organic Synthesis and College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
B Corresponding authors. Emails: hyzhao@imu.edu.cn; bzx1957@sina.com
Australian Journal of Chemistry 68(7) 1035-1041 https://doi.org/10.1071/CH14529
Submitted: 29 August 2014 Accepted: 23 October 2014 Published: 2 February 2015
Abstract
[3]Ferrocenophane-containing chalcone derivatives with benzene ring (3a–3d) or naphthalene ring (3e–3f) were synthesized and characterized. The potentials for [3]ferrocenophane-containing chalcones cathodically shifted ~70–80 mV compared with those of ferrocene-containing chalcones, indicating easier oxidation by loss of an electron for the former. The thermal behaviours of the prepared compounds were studied by differential scanning calorimetry and polarizing optical microscopy. Compound 3f with terminal alkyl chain of 14 carbon atoms displayed mesophases, whereas other compounds were non-mesomorphic and showed either crystal polymorphic phase transitions or simple melting and freezing process in the heating and cooling cycles.
References
[1] V. H. Purecha, N. S. Nandurkar, B. M. Bhanage, J. M. Nagarkar, Tetrahedron Lett. 2008, 49, 5252.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVemsLY%3D&md5=5495df9fa3e04537edd32f3fd9f44bbeCAS |
[2] J. C. Swarts, T. G. Vosloo, S. J. Cronje, W. C. Du Plessis, C. E. J. van Rensburg, E. Kreft, J. E. Van Lier, Anticancer Res. 2008, 28, 2781.
| 1:CAS:528:DC%2BD1cXhsVaqt7%2FO&md5=0aacc7451be3827a7e489e3cc529b7ecCAS | 19035310PubMed |
[3] T. Romero, R. A. Orenes, A. Tárraga, P. Molina, Organometallics 2013, 32, 5740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVCqurg%3D&md5=c7654ea74c0ea78d84d4e3bc30f55b54CAS |
[4] R. A. Cardona, K. Hernández, L. E. Pedró, M. R. Otaño, I. Montes, A. R. Guadalupe, J. Electrochem. Soc. 2010, 157, F104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Gks7o%3D&md5=5b5acd784705fc62dbbc07ac5668d6d4CAS |
[5] T. Ogoshi, A. Harada, Sensors 2008, 8, 4961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVekt7%2FE&md5=8a03b59b6212f44a4e34dfdf52962dd6CAS |
[6] V. Ganesh, V. S. Sudhir, T. Kundu, S. Chandrasekaran, Chem. – Asian J. 2011, 6, 2670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjur3N&md5=80d23695b2e50b5ddc35b8eaabf06de8CAS | 21882351PubMed |
[7] H. Y. Zhao, L. Guo, S. F. Chen, Z. X. Bian, RSC Adv. 2013, 3, 19929.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eju7%2FE&md5=231fa62e0680697d0a27554849b2cb33CAS |
[8] A. Hildebrandt, T. Ruffer, E. Erasmus, J. C. Swarts, H. Lang, Organometallics 2010, 29, 4900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWkurs%3D&md5=43c09ec6538432b3804e3cdee91af35bCAS |
[9] O. N. Kadkin, Y. G. Galyametdinov, Russ. Chem. Rev. 2012, 81, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ahtrzJ&md5=cc58f57510be65c714fb252b56813806CAS |
[10] K. C. Majumdar, S. Chakravorty, N. Pal, R. K. Sinha, Tetrahedron 2009, 65, 7998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsLrP&md5=05a4cbd9dd0674b6207c42b00bcdee7bCAS |
[11] H. Y. Zhao, L. Guo, S. F. Chen, Z. X. Bian, J. Mol. Struct. 2013, 1054–1055, 164.
| Crossref | GoogleScholarGoogle Scholar |
[12] W. A. Amer, L. Wang, H. Yu, A. M. Amin, Y. Wang, J. Inorg. Organomet. Polym. 2012, 22, 1229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFamt77O&md5=a3ee5f39f338f69bc67b4d7e7ab6e90aCAS |
[13] P. Massiot, M. Impéror-Clerc, M. Veber, R. Deschenaux, Chem. Mater. 2005, 17, 1946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Cms7Y%3D&md5=dac0513cc77223369c8bca74113b03f1CAS |
[14] Z. Y. Cheng, B. Y. Ren, X. Y. Chang, R. Liu, Z. Tong, Chin. Chem. Lett. 2012, 23, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt12nt7s%3D&md5=c96a6a97f50413f954d5833d561dcf7fCAS |
[15] W. A. Amer, L. Wang, A. M. Amin, H. Yu, L. Zhang, C. Li, Y. Wang, Polym. Adv. Technol. 2013, 24, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlaiurbN&md5=d533273aaed89002a6150dd3a1dc2fb7CAS |
[16] Y. Gao, J. M. Shreeve, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFOis7s%3D&md5=89c37b8118d010f8e812f9f05e246be8CAS |
[17] S. Y. Kim, O. N. Kadkin, E. H. Kim, M.-G. Choi, J. Organomet. Chem. 2011, 696, 2429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCksLw%3D&md5=1523e583fea84a547781dd830e2afbc7CAS |
[18] O. Kadkin, H. Han, Yu. Galyametdinov, J. Organomet. Chem. 2007, 692, 5571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWrsb%2FK&md5=7b958ec1c1d703e6941eebc4a142d9a8CAS |
[19] T. Ogata, K. Oikawa, T. Fujisawa, S. Motoyama, T. Izumi, A. Kasahara, N. Tanaka, Bull. Chem. Soc. Jpn. 1981, 54, 3723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtlWqt7Y%3D&md5=7b65e8cdea6293aee7195605c5c283b1CAS |
[20] B. T. Thaker, D. B. Solanki, B. S. Patel, N. B. Patel, Liq. Cryst. 2013, 40, 1296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptV2nsrg%3D&md5=be80e460ee20084429bd72532e386597CAS |
[21] C. V. Yelamaggad, N. L. Bonde, A. S. Achalkumar, D. S. S. Rao, S. K. Prasad, A. K. Prajapati, Chem. Mater. 2007, 19, 2463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlChsLw%3D&md5=26e069140559e816f6de644995a69870CAS |
[22] M. Guo, X. Wang, Eur. Polym. J. 2009, 45, 888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGrsL4%3D&md5=7a9e235bfdf6488115d02020fcea7187CAS |
[23] H. N. Chauhan, A. V. Doshi, Mol. Cryst. Liq. Cryst. 2013, 570, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlejsLc%3D&md5=5d91c18d488e2e3226343c51e33b1b57CAS |
[24] V. S. Pandey, R. Dhar, A. K. Singh, A. S. Achalkumar, C. V. Yelamaggad, Phase Transitions 2010, 83, 1049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKkt7jP&md5=ceea1e05ea3c826416b7d0a0bae24dc2CAS |
[25] T. J. Muller, J. Conradie, E. Erasmus, Polyhedron 2012, 33, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsF2itg%3D%3D&md5=cb005f3bbbbb9426a1a8e567eca22797CAS |
[26] R. Prasath, P. Bhavana, S. W. Ng, E. R. T. Tiekink, J. Organomet. Chem. 2013, 726, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslajtrY%3D&md5=c55e3f882d60170e58e12e54e414a16cCAS |
[27] V. Zsoldos-Mády, A. Csámpai, R. Szabó, E. Mészáros-Alapi, J. Pásztor, F. Hudecz, P. Sohár, ChemMedChem 2006, 1, 1119.
| Crossref | GoogleScholarGoogle Scholar | 16944543PubMed |
[28] H. Zhao, M. Chen, X. Zhu, S. Chen, Z. Bian, Res. Chem. Intermed. 2013,
| Crossref | GoogleScholarGoogle Scholar |
[29] R. R. McGuire, J. Organomet. Chem. 1975, 84, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsFClur4%3D&md5=b1ce07d037f84c8a82b917038cb6a5b6CAS |
[30] T. Mochida, H. Shimizu, S. Suzuki, T. Akasaka, J. Organomet. Chem. 2006, 691, 4882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFenu7zP&md5=992ad1ac068cefc39a7bc008298fe944CAS |
[31] S. Toma, E. Solčániová, J. Organomet. Chem. 1985, 288, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XovVOktw%3D%3D&md5=02b6fc73e714942aa435e7857989b8faCAS |
[32] C. C. Joubert, L. van As, A. Jakob, J. M. Speck, H. Lang, J. C. Swarts, Polyhedron 2013, 55, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVGhtr0%3D&md5=1651f6c3f01e9f3ae7828f799d961d92CAS |
[33] R. G. Sutherland, J. R. Sutton, J. Organomet. Chem. 1976, 122, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsFGktbw%3D&md5=357e14651291b02677470f4aecbeee65CAS |
[34] A. Reichert, M. Bolte, H. W. Lerner, M. Wagner, J. Organomet. Chem. 2013, 744, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvV2gs7s%3D&md5=2ee5e5697eeac5ea36df4b73a7055e6fCAS |