Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Facile Synthesis of Ion Imprinted Mesoporous Silica Adsorbents by a Co-Condensation Pathway and Application in a Fixed-Bed Column Study for Lead Removal

Yanmin Gao A D , Zhaoyong Hu A , Yan Liu B D , Zhanchao Liu A , Rui Chen C , Xiangguo Meng C , Mingjia Meng B and Chao Zhou A
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China.

B School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.

C School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China.

D Corresponding authors. Email: mcmsba@163.com; lyan@mail.ujs.edu.cn

Australian Journal of Chemistry 68(7) 1051-1064 https://doi.org/10.1071/CH14461
Submitted: 21 July 2014  Accepted: 6 November 2014   Published: 28 January 2015

Abstract

Highly selective lead ion imprinted mesoporous silica adsorbents (PbII-IMS) were prepared through a co-condensation pathway with 3-(γ-aminoethylamino)propyltrimethoxysilane (AAPTS) (PbII-IMS-NN) and 3-aminepropyltriethoxysilyl (APTES) (PbII-IMS-N) as monomers. The prepared adsorbents were characterised by FT-IR spectroscopy, X-ray photoelectron spectroscopy, power X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and nitrogen adsorption–desorption techniques. The results showed that the synthesised adsorbents presented a highly ordered mesoporous structure. In comparison with PbII-IMS-N, PbII-IMS-NN demonstrated a higher adsorption capacity in a series of static and dynamic adsorption experiments, and was further applied to a continuous fixed-bed column study under different conditions. It was found that the breakthrough time of the fixed-bed increased with an increase in bed depth, but decreased with increased flow rate and initial PbII concentration, and the dynamic adsorption data was more consistent with the Thomas model than the Adams–Bohart model. Furthermore, the PbII-IMS-NN showed a greater recognition and binding affinity towards the target lead ions than PbII-IMS-N.


References

[1]  G. Zeng, Y. Pang, Z. Zeng, L. Tang, Y. Zhang, Y. Liu, J. Zhang, X. Lei, Z. Li, Y. Xiong, G. Xie, Langmuir 2012, 28, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCisL3O&md5=4b1596de94d60496b9ac11b21464c295CAS | 22126706PubMed |

[2]  J. Wang, C. Cheng, X. Yang, C. Chen, A. Li, Ind. Eng. Chem. Res. 2013, 52, 4072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKqsrY%3D&md5=e7da7fc3f114aad456bf5630fcfab1c6CAS |

[3]  L. Xiong, C. Chen, Q. Chen, J. Ni, J. Hazard. Mater. 2011, 189, 741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlemsLg%3D&md5=a5003fa6b0023a1ce271b769d5817336CAS | 21466911PubMed |

[4]  L. Bernal-Martinez, S. H. Lopez, C. B. Diaz, F. U. Nunez, B. Bilyeu, Ind. Eng. Chem. Res. 2008, 47, 1026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlalug%3D%3D&md5=f77bb32ab8bd88541d1f038f37b4743dCAS |

[5]  M. K. Aroua, S. P. Leong, L. Y. Teo, C. Y. Yin, W. M. Daud, Bioresour. Technol. 2008, 99, 5786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVKrsLs%3D&md5=7a9dc5c6799929a31bd324ded5a072deCAS | 18023577PubMed |

[6]  C. Branger, W. Meouche, A. Margaillan, React. Funct. Polym. 2013, 73, 859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvV2kt7g%3D&md5=ca98970cf97f3345fdc969fa7e13421eCAS |

[7]  X. Xu, S. Chen, Q. Wu, J. Colloid Interface Sci. 2012, 385, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GisLrP&md5=6847c2cb11683cc8648f0d6ff69e02a6CAS | 22858396PubMed |

[8]  X. Zhu, Y. Cui, X. Chang, X. Zou, Z. Li, Mikrochim. Acta 2009, 164, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOlsA%3D%3D&md5=e2dd91a1b4170ef84f494c9a67026cf8CAS |

[9]  M. Monier, D. A. A. Latif, Chem. Eng. J. 2013, 221, 452.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFChsLg%3D&md5=354b90a6bb8cb87411acab49dc9e0887CAS |

[10]  H. T. Fan, X. Fan, J. Li, M. Guo, D. Zhang, F. Yan, T. Sun, Ind. Eng. Chem. Res. 2012, 51, 5216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVGgtL4%3D&md5=2fcc9a485a51d345c4554c1a881b8b3aCAS |

[11]  F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 2006, 45, 3216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVOht7s%3D&md5=b8feb6f985c3f84a8aeb76f4383ff7bdCAS |

[12]  J. Aguado, J. M. Arsuaga, A. Arencibia, Microporous Mesoporous Mater. 2008, 109, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgtrnO&md5=05c601dd7b6ca0a91b0dad03b5ad7c82CAS |

[13]  Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F. S. Xiao, Chem. Mater. 2005, 17, 5999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKrt77P&md5=6e93a7f507beb8f5590bb26e2793c11eCAS |

[14]  F. Gao, R. Jin, D. Zhang, Q. Liang, Q. Ye, G. Liu, Green Chem. 2013, 15, 2208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCltbfF&md5=5c3ebb4cdd5895d3f6141252a19c292aCAS |

[15]  H. Ritter, M. Nieminen, M. Karppinen, D. Brühwiler, Microporous Mesoporous Mater. 2009, 121, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Kjtbk%3D&md5=b0b844e68a4c61a08f4fad1971755884CAS |

[16]  K. Parida, K. G. Mishra, S. K. Dash, Ind. Eng. Chem. Res. 2012, 51, 2235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cjt7zI&md5=0772c5b34bbbf4b8ef3b803d24337d9dCAS |

[17]  M. Machida, B. Fotoohia, Y. Amamo, T. Ohbad, H. Kanohd, L. Merciera, J. Hazard. Mater. 2012, 221–222, 220.
         | Crossref | GoogleScholarGoogle Scholar | 22579402PubMed |

[18]  W. Guo, R. Chen, Y. Liu, M. Meng, X. Meng, Z. Hu, Z. Song, Colloids Surf. A 2013, 436, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Sns7%2FO&md5=d9d0e8e08f194edaf39b1b947a1fe0efCAS |

[19]  L. L. Lou, S. Jiang, K. Yu, Z. Gu, R. Ji, Y. Dong, S. Liu, Microporous Mesoporous Mater. 2011, 142, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFOnsbw%3D&md5=7cf3a6aa6c48e9c7dc6632a1beb9d4adCAS |

[20]  J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascon, J. Hazard. Mater. 2009, 163, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Sjsw%3D%3D&md5=826657b0ef6c96f1f6eb536d81bff022CAS | 18675509PubMed |

[21]  W. Y. Huang, D. Li, J. Yang, Z. Q. Liu, Y. Zhu, Q. Tao, K. Xu, J. Q. Li, Y. M. Zhang, Microporous Mesoporous Mater. 2013, 170, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGgt70%3D&md5=622d02a903bf1b0d653a4d4a466734c4CAS |

[22]  Y. Liu, Z. Liu, J. Gao, J. Dai, J. Han, Y. Wang, J. Xie, Y. Yan, J. Hazard. Mater. 2011, 186, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFartLc%3D&md5=e79440f447e15defb90cc0c0fc8da340CAS | 21109351PubMed |

[23]  E. Da’na, A. Sayari, Desalination 2012, 285, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KktL3N&md5=df5930091107f6e0660b5f7753701c0dCAS |

[24]  C. Pereira, C. Alves, A. Monteiro, C. Magen, A. M. Pereira, A. Ibarra, M. R. Ibarra, P. B. Tavares, J. P. Araujo, G. Blanco, J. M. Pintado, A. P. Carvalho, J. Pires, M. F. Pereira, C. Freire, ACS Appl. Mater. Interfaces 2011, 3, 2289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Glsr0%3D&md5=1207a41426f96b9eaedd64619cef1aa7CAS | 21615151PubMed |

[25]  G. Bohart, E. Adams, J. Am. Chem. Soc. 1920, 42, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3cXlsl2g&md5=a2d80dbc71d303932f4ec1c5a0f25ff6CAS |

[26]  H. C. Thomas, J. Am. Chem. Soc. 1944, 66, 1664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXktFegsQ%3D%3D&md5=efaf741ebc35413f96bc55ad9fea80fcCAS |

[27]  C. Quintelas, R. Pereira, E. Kaplan, T. Tavares, Bioresour. Technol. 2013, 142, 368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2lur7P&md5=28947ff52cecb4b6c8ac93fbd6d887d7CAS | 23748085PubMed |

[28]  M. Meng, Z. Wang, L. Ma, M. Zhang, J. Wang, X. Dai, Y. Yan, Ind. Eng. Chem. Res. 2012, 51, 14915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFaku7%2FK&md5=c9a3b3c33396f497fc00964e18cee5b8CAS |

[29]  B. Conings, L. Baeten, C. D. Dobbelaere, Adv. Mater. 2014, 26, 2041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaqs7nF&md5=9b5ff8d4556a99e47eba4b3afffffa69CAS | 24338932PubMed |

[30]  S. Sun, A. Wang, Separ. Purif. Technol. 2006, 51, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValtLrM&md5=1c6064b02c712c9ecc86f17062ea5985CAS |

[31]  A. Yu. Tarasova, L. I. Isaenko, V. G. Kesler, J. Phys. Chem. Solids 2012, 73, 674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFOisLo%3D&md5=2804617e207878bd2839801ec09d3bd8CAS |

[32]  M. Thommes, Chem. Ing. Technol. 2010, 82, 1059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotFemt7Y%3D&md5=66c6664840769ba6d9d1aa418f34b316CAS |

[33]  J. R. Deka, S. Vetrivel, H. Y. Wu, Y. C. Pan, C. C. Ting, Y. L. Tsai, H. M. Kao, Ultrason. Sonochem. 2014, 21, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKhu7bE&md5=7beb6e33911c2a37a84a7df30c888bafCAS | 23835400PubMed |

[34]  D. S. Rajawat, A. Kardam, S. Srivastava, S. P. Satsangee, Environ. Sci. Pollut. Res. 2013, 20, 3068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVWqurc%3D&md5=4222713bb45984f1ae9fe29e82ccb57dCAS |

[35]  Y. Mansourpanah, K. Alizadeh, S. S. Madaeni, Desalination 2011, 271, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlWgu74%3D&md5=f68632ffa31343c39cb9a5a4cbf04707CAS |

[36]  I. Gorelikov, N. Matsuura, Nano Lett. 2008, 8, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgtbfF&md5=67bd30b5906c8b7e4acca50767b61e58CAS | 18072800PubMed |

[37]  R. I. Nooney, D. Thirunavukkarasu, Y. Chen, Chem. Mater. 2002, 14, 4721.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVKntbw%3D&md5=b0a619e0738359205d5e3dd55bb03b51CAS |

[38]  M. M. Wan, J. Y. Yang, Y. Qiu, Y. Zhou, C. X. Guan, Q. Hou, W. G. Lin, J. H. Zhu, ACS Appl. Mater. Interfaces 2012, 4, 4113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsb3I&md5=b8dce790ccbbb4e8527794570d7330d3CAS | 22850329PubMed |

[39]  C. R. T. Tarley, F. N. Andrade, H. d. Santana, D. A. M. Zaia, L. A. Beijo, M. G. Segatelli, React. Funct. Polym. 2012, 72, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CitrfP&md5=abd9942b209d4ac7f8663e6f3f34b060CAS |

[40]  X. Zhao, G. Lu, A. Whittaker, G. Millar, H. Zhu, J. Phys. Chem. B 1997, 101, 6525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVSnsb8%3D&md5=add384baf6d5328c7c1ec5a78d9caa76CAS |

[41]  G. J. Fan, H. Choo, P. K. Liaw, J. Non-Cryst. Solids 2007, 353, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12gtLrM&md5=556901d46851d35101b70c3669748743CAS |

[42]  L. Bois, A. Bonhommé, A. Ribes, Colloids Surf. A 2003, 221, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFykt7k%3D&md5=c8f003e09a372c6a423a367bdf0376c2CAS |

[43]  V. Lugo-Lugo, S. H. López, C. B. Díaz, F. U. Núñez, B. Bilyeu, J. Hazard. Mater. 2009, 161, 1255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqsbvL&md5=7cb79ae4fea663c711212c6b7615dfb7CAS | 18550277PubMed |

[44]  R. C. Allen, J. T. Stephens, Luminescence 2011, 26, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Sgsrk%3D&md5=e23ccc36b92dc5b047d2476e1d01d13bCAS | 21681911PubMed |

[45]  Y. Liu, J. Chem. Eng. Data 2009, 54, 1981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVChtbY%3D&md5=4c1c1f83699d3937040f679ab2edebb0CAS |

[46]  T. S. Anirudhan, S. R. Rejeena, Ind. Eng. Chem. Res. 2011, 50, 13288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWrsL%2FK&md5=3abc69a8297bb9d3f48e39eb5482bba5CAS |

[47]  J. Anwar, U. Shafique, M. Salman, A. Dar, S. Anwar, Bioresour. Technol. 2010, 101, 1752.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wlu77M&md5=969a4d5f4c8c52681e53c48dc3adba4eCAS | 19906528PubMed |

[48]  M. Meng, Y. Feng, M. Zhang, Chem. Eng. J. 2013, 225, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCrtr8%3D&md5=8fe32a1f9f738f8e819bb74d1bba23f2CAS |

[49]  S. Chowdhury, P. D. Saha, Environ. Sci. Pollut. Res. 2013, 20, 1050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSisb8%3D&md5=26576a92f180a72ea69030b56fd2e1afCAS |

[50]  S. Debnath, K. Biswas, U. C. Ghosh, Ind. Eng. Chem. Res. 2010, 49, 2031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgt7Y%3D&md5=499d19bcdf34ff52a60a53cfa06a976aCAS |

[51]  I. Kavianinia, P. G. Plieger, N. G. Kandile, D. R. Harding, Carbohydr. Polym. 2012, 90, 875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Knu7k%3D&md5=2835a27313bb85f6749132eed30786abCAS | 22840015PubMed |

[52]  P. Liao, Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, S. Yuan, Chem. Eng. J. 2013, 228, 496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrtb3N&md5=aeefe4fabb033b057770b1d81daa6daeCAS |

[53]  R. Sharma, B. Singh, Bioresour. Technol. 2013, 146, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVejtLfM&md5=df57807e1153fa00cdac2dc5b1b34bb9CAS | 23973969PubMed |

[54]  H. H. Tran, F. A. Roddick, Water Res. 1999, 33, 3001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFKgu78%3D&md5=1076aa7e62dd2545b0bfd62eedb290b9CAS |

[55]  H. Paudyal, B. Pangeni, K. Inoue, H. Kawakita, K. Ohto, S. Alam, Bioresour. Technol. 2013, 146, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WrsrrE&md5=d757c0dec27da5aa0afd8fceb1b5ad35CAS | 23916190PubMed |

[56]  W. Zou, L. Zhao, L. Zhu, J. Radioanal. Nucl. Chem. 2013, 295, 717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyku7%2FP&md5=8df3b704eb6424e1df23f3e4e1dfe357CAS |