Preparation of Metal-Free Nitrogen-Doped Graphene Via Direct Electrochemical Exfoliation of Graphite in Ammonium Nitrate
Richard Gondosiswanto A , Xunyu Lu A and Chuan Zhao A B
+ Author Affiliations
- Author Affiliations
A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
B Corresponding author. Email: chuan.zhao@unsw.edu.au
Australian Journal of Chemistry 68(5) 830-835 https://doi.org/10.1071/CH14447
Submitted: 9 July 2014 Accepted: 7 August 2014 Published: 3 November 2014
Abstract
Nitrogen-doped graphene (N-graphene) nanosheets have been synthesized via electrochemical intercalation and exfoliation of graphite rods in ammonium nitrate aqueous solutions. This method produces N-graphene free from possible metal contaminations that can be utilized as efficient electrocatalysts towards oxygen reduction reactions.
References
[1] L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao, Adv. Mater. 2009, 21, 4726.| 1:CAS:528:DC%2BD1MXhsFGnurbF&md5=13649b2bf2bc5c676efecd175bd5c78aCAS |
[2] L. Qu, Y. Liu, J-B. Baek, L. Dai, ACS Nano 2010, 4, 1321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOru7s%3D&md5=f53ef80ced59d7686f9ba567eff5eb3aCAS | 20155972PubMed |
[3] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=b0bf55fad73e403bead4618c9d3a992dCAS | 17330084PubMed |
[4] Z. Lin, G. H. Waller, Y. Liu, M. Liu, C-p. Wong, Carbon 2013, 53, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GntbnI&md5=5647f3ad507a18efeeca1012885fb5ebCAS |
[5] Z. Lin, Y. Liu, Y. Yao, O. J. Hildreth, Z. Li, K. Moon, C-p. Wong, J. Phys. Chem. C 2011, 115, 7120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKisLs%3D&md5=39f9f7b3bda086100f1b1d885eb3b530CAS |
[6] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, P. M. Ajayan, ACS Nano 2010, 4, 6337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Khtr3M&md5=078ad97fff0adae5f795a8e64994f570CAS |
[7] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslWms7o%3D&md5=20ac15bdebb1935a291daab0a7c43cbaCAS | 19326921PubMed |
[8] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Adv. Mater. 2011, 23, 1020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1KjtL0%3D&md5=766d10c9618b0ca9959bb435361bf8f3CAS | 21341318PubMed |
[9] D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Chem. Mater. 2011, 23, 1188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1egtbg%3D&md5=6c3ad84a0c64d11856603eee3c5b3e56CAS |
[10] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S-H. Yoon, Langmuir 2010, 26, 16096.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qsr3M&md5=6fdffb4312cf83598c6c3d41a7062743CAS | 20863088PubMed |
[11] S. A. Hasan, E. K. Tsekoura, V. Sternhagen, M. Strømme, J. Phys. Chem. C 2012, 116, 6530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xislaktr8%3D&md5=abc881c2242fadc6a3d25d4c7cf56021CAS |
[12] K. Parvez, Z-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mulen, J. Am. Chem. Soc. 2014, 136, 6083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFGmsbs%3D&md5=4e9194726b03dc585f80b4ea89afd724CAS | 24684678PubMed |
[13] K. Parvez, R. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Mullen, ACS Nano 2013, 7, 3598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslWgt7k%3D&md5=afecb03eda0066b0ef0c39231cd95aaaCAS | 23531157PubMed |
[14] C.-Y. Su, A-Y. Lu, Y. Xu, F-R. Chen, A. N. Khlobystov, L-J. Li, ACS Nano 2011, 5, 2332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslGgsL0%3D&md5=a67da624c44e1d996e7683dde7684473CAS | 21309565PubMed |
[15] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ymu7Y%3D&md5=0c5595c914aec047a90b92e674d9caccCAS |
[16] Y. L. Zhong, T. M. Swager, J. Am. Chem. Soc. 2012, 134, 17896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFamtr7K&md5=bca8620e9bae5f7514e7a95d48048c12CAS | 23075388PubMed |
[17] X. Lu, C. Zhao, Phys. Chem. Chem. Phys. 2013, 15, 20005.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslart7%2FI&md5=d52d22c9b54626dabedf15c14b11d7ffCAS | 24169792PubMed |
[18] D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, T. Ryhanen, Chem. Commun. 2012, 48, 1239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVGktg%3D%3D&md5=7542f167080d1d52f1a9b98afadc216cCAS |
[19] P. Scharff, Z. Y. Xu, E. Stumpp, K. Barteczko, Carbon 1991, 29, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFyqtA%3D%3D&md5=c24f68d0b53ca07c09bca3f448f8dd55CAS |
[20] J. O. Besenhard, H. P. Fritz, Angew. Chem., Int. Ed. Engl. 1983, 22, 950.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsV2qurk%3D&md5=53b60d44a5e7709be7365c82eee561b3CAS | 19702326PubMed |
[22] R. Halseid, J. S. Wainright, R. F. Savinell, R. Tunold, J. Electrochem. Soc. 2007, 154, B263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSqu70%3D&md5=46c19caa59a4061071c13cedf14d4f8cCAS |
[23] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, H. Fu, RSC Adv. 2012, 2, 4498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlSjsbw%3D&md5=6520a51cee274b321474cc173628f7dcCAS |
[24] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1ajtLs%3D&md5=49352bcb1a073c3c3f71b78adb4c874fCAS | 18654470PubMed |
[25] L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190.
| Crossref | GoogleScholarGoogle Scholar | 21696186PubMed |
[26] R. Bajpai, S. Roy, N. Kulshrestha, J. Rafiee, N. Koratkar, D. S. Misra, Nanoscale 2012, 4, 926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1emuw%3D%3D&md5=065852c813806e5d9d5f23ace0b74335CAS | 22193832PubMed |
[27] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12gtbY%3D&md5=15c8f14fd177fc79356ead7f68b7d5b2CAS | 19423775PubMed |
[28] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jitlersg%3D%3D&md5=7abc6ba5bebf9f791f5a4b8a8788864fCAS | 17155573PubMed |
[29] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Science 2000, 290, 314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVGisL0%3D&md5=9224a3a88ecacf747550b6e328ba85daCAS | 11030645PubMed |
[30] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXlt1yjuw%3D%3D&md5=0c3d61247b38cba6a84e1bc81ef53c64CAS |
[31] S. M. Unni, S. Devulapally, N. Karjule, S. Kurungot, J. Mater. Chem. 2012, 22, 23506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCqsbrL&md5=cbfd0da68667e1460a81196ed5225c4aCAS |
[32] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersL8%3D&md5=2d663ed6c024294c09f4d5a450363a2dCAS | 19197058PubMed |
[33] Z. Lin, M-k. Song, Y. Ding, Y. Liu, M. Liu, C-p. Wong, Phys. Chem. Chem. Phys. 2012, 14, 3381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitl2gt7s%3D&md5=c988d26060802f30dc61638d0bda343dCAS | 22307527PubMed |
[34] Z.-S. Wu, W. Ren, L. Xu, F. Li, H-M. Cheng, ACS Nano 2011, 5, 5463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSnurY%3D&md5=7c427284f0851b16f0db057e75a24ebcCAS | 21696205PubMed |