Solvatomorphism and Electronic Communication in FeIII N,N-Bis(salicylidene)-1,3-propanediamine Dimers
Jitnapa Sirirak A , David J. Harding A C , Phimphaka Harding A , Lujia Liu B and Shane G. Telfer BA Molecular Technology Research Unit, School of Science, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand.
B MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
C Corresponding author. Email: hdavid@wu.ac.th
Australian Journal of Chemistry 68(5) 766-773 https://doi.org/10.1071/CH14441
Submitted: 5 July 2014 Accepted: 1 August 2014 Published: 21 October 2014
Abstract
The reaction of H2salpn (H2salpn = N,N′-bis(salicylidene)-1,3-propanediamine) with Fe(ClO4)3 in a ratio of 1 : 1 and 3 : 2, leads to dark red crystals of the solvatomorphs [(salpn)Fe(μ2-salpn)Fe(salpn)]·0.5MeOH (1) and [(salpn)Fe(μ2-salpn)Fe(salpn)]·MeOH (2), respectively. X-Ray crystallographic studies reveal a slightly distorted octahedral geometry and meridional configuration of the N and O donor atoms with one of the salpn ligands acting as a bridge between the two FeIII atoms to create a dimer. The Fe–N/O bond distances for both dimers indicate that the Fe centres are high spin. Supramolecular dimeric pairs are formed in both structures from C–H···π and/or C–H···O interactions. However, the degree of solvation significantly impacts the arrangements of these dimeric pairs with tightly packed 1D chains in 2 and more loosely packed chains in 1. In addition, electrochemical studies reveal weak communication between the two Fe atoms despite the large distance between them and the lack of conjugation across the bridge.
References
[1] R. Hernández-Molina, A. Mederos, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. J. Meyer) 2003, Ch. 1.19, pp. 411–446 (Elsevier: Amsterdam).[2] A. Blagus, D. Cinčić, T. Friščić, B. Kaitner, V. Stilinović, Maced. J. Chem. Chem. Eng. 2010, 29, 117.
| 1:CAS:528:DC%2BC3MXitVWisrg%3D&md5=02752e7e6879949daa863366d996bbc7CAS |
[3] R. M. Clarke, T. Storr, Dalton Trans. 2014, 43, 9380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVSisb0%3D&md5=b1c63221f30b66be83b467a53427ba4fCAS | 24722684PubMed |
[4] N. S. Venkataramanan, G. Kuppuraj, S. Rajagopal, Coord. Chem. Rev. 2005, 249, 1249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVKntrg%3D&md5=3e97da8f8c0cd5823d7d757b816b3b8bCAS |
[5] L. Que, Coord. Chem. Rev. 1983, 50, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVWrtL0%3D&md5=31184d20ddee962e80d2edab72526cb9CAS |
[6] T. Katsuki, Chem. Soc. Rev. 2004, 33, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlWmtLY%3D&md5=4802339a5dd1b29eefabaf628b3a56d3CAS | 15354225PubMed |
[7] P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlWmtLc%3D&md5=a9a05630d6ef9afd57932d724543627aCAS | 15354222PubMed |
[8] K. S. Pedersen, J. Bendix, R. Clérac, Chem. Commun. 2014, 50, 4396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1aru78%3D&md5=242d6841a49e3e392166b908d478a55aCAS |
[9] T. Glaser, Chem. Commun. 2011, 47, 116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtLfJ&md5=a7e50f906264bd067a3dcc54bc0a0719CAS |
[10] H. Aneetha, K. Panneerselvam, T.-F. Liao, T.-H. Lu, C.-S. Chung, J. Chem. Soc., Dalton Trans. 1999, 2689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFKitL8%3D&md5=75ba34ba9cbdd82be6597caaf7cfe161CAS |
[11] R. Biswas, C. Diaz, A. Bauzá, A. Frontera, A. Ghosh, Dalton Trans. 2013, 42, 12274.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WltLvM&md5=1eb8b6978555a7f22e7aedd6481e26a4CAS | 23846248PubMed |
[12] Y. Yahsi, H. Kara, L. Sorace, O. Buyukgungor, Inorg. Chim. Acta 2011, 366, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGlsw%3D%3D&md5=d2d72cfece15db4c4bec32c41f24b5f4CAS |
[13] P. Angaridis, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2005, 44, 3626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtV2ksbc%3D&md5=077233f87af9739e6af4c440feea79d4CAS | 15877447PubMed |
[14] R. Herchel, L. Pavelek, Z. Trávníček, Dalton Trans. 2011, 40, 11896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVequ7bF&md5=6e0fee4a93683ec97cc56c814d0f3858CAS | 21968851PubMed |
[15] X. Feng, S. H. Li, Q. Q. Sun, P. P. Lei, C. Z. Xie, Russ. J. Coord. Chem. 2011, 37, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyls7s%3D&md5=dcbd01e8a37c5e6bbce73647a3555df1CAS |
[16] Rigaku Corporation, Rigaku XRD 1996 (Rigaku: Tokyo).
[17] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |
[18] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=aaca26860e75b3466b3e308b609249aeCAS |
[19] J. K. McCusker, A. L. Rheingold, D. N. Hendrickson, Inorg. Chem. 1996, 35, 2100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVGgs7w%3D&md5=3a2977dfb3fb753eba3cefd04dad392dCAS |
[20] M. Marchivie, P. Guionneau, J. F. Létard, D. Chasseau, Acta Crystallogr., Sect. B: Struct. Sci. 2005, 61, 25.
| Crossref | GoogleScholarGoogle Scholar |