Novel Tri-Cholesteryl Derivatives-Based Low Molecular Mass Organic Gelators with Multi-Stimuli Responsive Properties
Min Xue A B , Chunmeng Yu A , Gang Wang A , Hang Yu A and Yu Fang A CA Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China.
B School of Chemistry and Chemical Engineering, Xi’an University, Xi’an 710065, China.
C Corresponding author. Email: yfang@snnu.edu.cn
Australian Journal of Chemistry 68(5) 836-843 https://doi.org/10.1071/CH14437
Submitted: 4 July 2014 Accepted: 11 August 2014 Published: 3 November 2014
Abstract
Two novel tri-cholesteryl derivatives 1 and 2 have been designed and prepared. Gelation tests in 30 liquids revealed that 1 is a more efficient gelator than 2. Interestingly, the gel of 1/cyclohexane shows a reversible sol–gel phase transition in response to a variety of disparate stimuli such as temperature, stress, and HCl gas. In particular, a fully reversible thixotropic property was observed, which has been rarely reported before. Fourier transform infrared spectroscopy and 1H NMR measurements revealed that hydrogen bonding is an important driving force for the formation of the gel networks. The network structures of 1 and 2 in their cyclohexane gels were studied by scanning electron microscopy and X-ray diffraction analyses, and possible packing models were proposed accordingly. The findings demonstrated in the present work suggest that there is a big potential for developing tri-cholesteryl derivatives into extraordinary low molecular mass gelators.
References
[1] J. H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, J. Am. Chem. Soc. 2000, 122, 5008.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFegu7k%3D&md5=323d6243266c293399c39b0c1c727aa8CAS |
[2] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, Chem. Mater. 2000, 12, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlGrsbk%3D&md5=2cb513da717c0b09d34b89fc6b8ae8c3CAS |
[3] P. C. Xue, R. Lu, Y. Huang, M. Jin, C. H. Tan, C. Y. Bao, Z. M. Wang, Y. Y. Zhao, Langmuir 2004, 20, 6470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFGkurk%3D&md5=e597ecc0f8a705e8c72752bcbc54305bCAS |
[4] B. Xing, C. W. Yu, K. H. Chow, P. L. Ho, D. Fu, B. Xu, J. Am. Chem. Soc. 2002, 124, 14846.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVCht7w%3D&md5=3b7d7ae767601a3e4b220a8f926557c8CAS | 12475316PubMed |
[5] S. Kiyonaka, K. Sugiyasu, S. Shinkai, I. Hamachi, J. Am. Chem. Soc. 2002, 124, 10954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlGksrs%3D&md5=75508c3dd0dff30694566a08e98de5b5CAS | 12224923PubMed |
[6] M. Suzuki, T. Sato, A. Kurose, H. Shiraib, K. Hanabusa, Tetrahedron Lett. 2005, 46, 2741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1eltL4%3D&md5=019677df494571f01bd9acaaad787c83CAS |
[7] M. Suzuki, S. Owa, M. Kimura, A. Kurose, H. Shiraib, K. Hanabusa, Tetrahedron Lett. 2005, 46, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrtrrI&md5=fc74e112bfbb678745e96c6a0f8e6b0aCAS |
[8] M. Suzuki, T. Nigawara, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, Org. Biomol. Chem. 2003, 1, 4124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslyjsr4%3D&md5=380500405ac4c74bfc96d6921a748fbaCAS | 14664402PubMed |
[9] H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li, C. Huang, Langmuir 2007, 23, 8224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wrt78%3D&md5=812cfc1e0f22b488b74fa7e95db384b1CAS | 17580919PubMed |
[10] M. Suzuki, T. Sato, H. Shiraib, K. Hanabusa, New J. Chem. 2006, 30, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyiu74%3D&md5=bfb423811397febe77acf09d1d2f8bd3CAS |
[11] Z. Qiu, H. Yu, J. Li, Y. Wang, Y. Zhang, Chem. Commun. 2009, 3342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVemsL0%3D&md5=8b218351c41ff123c3231130f60c9824CAS |
[12] O. Simalou, X. Zhao, R. Lu, P. Xue, X. Yang, X. Zhang, Langmuir 2009, 25, 11255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqurrF&md5=14793a72920513a7d11016437d52bdfbCAS | 19739637PubMed |
[13] G. Cravotto, P. Cintas, Chem. Soc. Rev. 2009, 38, 2684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsLfK&md5=87dcfa9fd37b2eb0d1ec5467e4ccefc0CAS | 19690747PubMed |
[14] J. B. Beck, S. J. Rowan, J. Am. Chem. Soc. 2003, 125, 13922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVSntb8%3D&md5=f0762a8cbc3b3bcb45710ddb9e9fb532CAS | 14611204PubMed |
[15] P. Rajamalli, E. Prasad, Org. Lett. 2011, 13, 3714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKjtLw%3D&md5=7443e09013795fec51b1e2226f93f8cfCAS | 21688866PubMed |
[16] S. I. Kawano, N. Fujita, S. Shinkai, J. Am. Chem. Soc. 2004, 126, 8592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKrs7g%3D&md5=988a149462298fb3bd1f0d3d55dc249aCAS |
[17] Z. Sun, Z. Li, Y. He, R. Shen, L. Deng, M. Yang, Y. Liang, Y. Zhang, J. Am. Chem. Soc. 2013, 135, 13379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ghs7zJ&md5=24095af1f9189604258a12a5d6add58fCAS | 23984683PubMed |
[18] K. Liu, N. Yan, J. Peng, J. Liu, Q. Zhang, Y. Fang, J. Colloid Interface Sci. 2008, 327, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemsb%2FO&md5=8a69e1cfa4ea7e9bec3369d3a208db57CAS | 18774144PubMed |
[19] H. Komatsu, S. Matsumoto, S. Tamaru, K. Kaneko, M. Ikeda, I. Hamachi, J. Am. Chem. Soc. 2009, 131, 5580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVKls7g%3D&md5=d710974051172ccddf0d5b8d94dff6c8CAS | 19331364PubMed |
[20] J. W. Chung, S. J. Yoon, S. J. Lim, B. K. An, S. Y. Park, Angew. Chem., Int. Ed. 2009, 48, 7030.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ltrzN&md5=25a2d91ed68c86c01da2c0778ac57aebCAS |
[21] Z. Qi, P. M. Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz, M. Gradzielski, C. A. Schalley, Chem. Sci. 2012, 3, 2073.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12qtrk%3D&md5=b6c410f63c409226f821c21208650f65CAS |
[22] A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, S. J. George, Angew. Chem., Int. Ed. 2007, 46, 6260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVSnsr0%3D&md5=358fce3b4bda9f04ca2db2fd86f89357CAS |
[23] A. Kishimura, T. Yamashita, T. Aida, J. Am. Chem. Soc. 2005, 127, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyltr7L&md5=52ba26470334d1ce8f8b884ed0f5515aCAS | 15631467PubMed |
[24] J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu, F. Yu, Adv. Mater. 2008, 20, 2508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVOrs74%3D&md5=0ed83cd64bccbb68e74eef2ccbdeff3bCAS |
[25] C. Wang, Q. Chen, F. Sun, D. Zhang, G. Zhang, Y. Huang, R. Zhao, D. Zhu, J. Am. Chem. Soc. 2010, 132, 3092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvF2lu7g%3D&md5=462036bc09415dc9726b6b107667612aCAS | 20158180PubMed |
[26] Y. C. Lin, B. Kachar, R. G. Weiss, J. Am. Chem. Soc. 1989, 111, 5542.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGrtrs%3D&md5=a212d564c58bbf7e97c484b71ddad98aCAS |
[27] P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFSitLk%3D&md5=1d3aef18cff971675c3d6d8952734836CAS | 11851487PubMed |
[28] P. Wallimann, T. Marti, A. Fürer, F. Diederich, Chem. Rev. 1997, 97, 1567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2kurg%3D&md5=72fc66864fc126b20ac838a510e6f323CAS | 11851459PubMed |
[29] H. A. Klok, J. J. Hwang, S. N. Iyer, S. I. Stupp, Macromolecules 2002, 35, 746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFamug%3D%3D&md5=db2cf7257bbde58b1331e07bdeaf7d91CAS |
[30] M. Žinic, F. Vögtle, F. Fages, Top. Curr. Chem. 2005, 256, 39.
| Crossref | GoogleScholarGoogle Scholar | 22160336PubMed |
[31] T. Ishi-i, S. Shinkai, Top. Curr. Chem. 2005, 258, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCltb7N&md5=ea0cad4c3cc54441f4a4f5a0807cc393CAS |
[32] U. Maitra, S. Mukhopadhyay, A. Sarkar, P. Rao, S. S. Indi, Angew. Chem., Int. Ed. 2001, 40, 2281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVWgu7o%3D&md5=001a31e341380d453e3a21612d878a7dCAS |
[33] S. Mukhopadhyay, U. Maitra, G. Ira,, J. Krishnamoorth, Y. Schmidt, Talmon, J. Am. Chem. Soc. 2004, 126, 15905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsV2ktbY%3D&md5=86dcaa832a4a80848e07a2a69b01a2d0CAS | 15571416PubMed |
[34] T. Jiao, F. Gao, Y. Wang, J. Zhou, F. Gao, X. Luo, Curr. Nanosci. 2012, 8, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptl2ku70%3D&md5=ca1e28c7784f2dc4a8fd0dbd3a7f6be3CAS |
[35] D. R. Trivedi, P. Dastidar, Chem. Mater. 2006, 18, 1470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOmsL8%3D&md5=12206a28a0ee9b2b6b0e2e7fa9a605caCAS |
[36] J. Peng, K. Liu, J. Liu, Q. Zhang, X. Feng, Y. Fang, Langmuir 2008, 24, 2992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yisb4%3D&md5=6416deb9bfbf3a6aaf416477b40c24fbCAS | 18294019PubMed |
[37] M. Xue, K. Liu, J. Peng, Q. Zhang, Y. Fang, J. Colloid Interface Sci. 2008, 327, 94.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemsbrN&md5=39bf762ffa46fc93c8e179e74133fb69CAS | 18774141PubMed |
[38] M. Xue, D. Gao, K. Liu, J. Peng, Y. Fang, Tetrahedron 2009, 65, 3369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2htrk%3D&md5=7c2661b5dd05d47f79051630d8e98bc1CAS |
[39] M. Xue, D. Gao, X. Chen, K. Liu, Y. Fang, J. Colloid Interface Sci. 2011, 361, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFamurc%3D&md5=01e0365673aa3bd19cf74b5b889745f3CAS | 21703632PubMed |
[40] K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Friggeri, A. Heeres, A. Meetsma, B. L. Feringa, J. van Esch, Angew. Chem., Int. Ed. 2004, 43, 1663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFSlsbg%3D&md5=ff11599e9346ba325625ee291bc0fe8cCAS |
[41] M. George, G. P. Funkhouser, P. Terech, R. G. Weiss, Langmuir 2006, 22, 7885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2gtrs%3D&md5=d6d21f7225523353c940bce36c6876aeCAS | 16922579PubMed |
[42] W. Weng, A. M. Jamieson, S. J. Rowan, Tetrahedron 2007, 63, 7419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVKlu7w%3D&md5=e30879478cda6cc06d0de4d0b3905af2CAS |
[43] V. Percec, M. Peterca, M. E. Yurchenko, J. G. Rudick, P. A. Heiney, Chem. – Eur. J. 2008, 14, 909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFejsrs%3D&md5=4ddd4571790be142543625dabf44351bCAS | 18022971PubMed |
[44] X. Yu, X. Cao, L. Chen, H. Lan, B. Liu, T. Yi, Soft Matter 2012, 8, 3329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGjs7s%3D&md5=56549e065872749f36f7362ffce0e420CAS |
[45] K. Liu, J. W. Steed, Soft Matter 2013, 9, 11699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVShur3P&md5=a7a584ba508f4700f7837b6ee3e7c6f9CAS |
[46] N. Yamada, T. Imai, E. Koyama, Langmuir 2001, 17, 961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtF2gsg%3D%3D&md5=91463e469ba56c0ecad5b4bb779a9822CAS |
[47] H. Jung, J. S. Shinkai, T. Shimizu, Chem. – Eur. J. 2002, 8, 2684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVGrsbo%3D&md5=2a946859469830012a94d9f6de2ec2f8CAS |
[48] K. Hanabusa, M. Matsumoto, M. Kimura, A. Kakehi, H. Shirai, J. Colloid Interface Sci. 2000, 224, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVCru7Y%3D&md5=783d3403b337a209c80b02be62ab8d15CAS | 10727333PubMed |