Ethylene Trimerisation with Cr-PNP Catalysts: A Theoretical Benchmarking Study and Assessment of Catalyst Oxidation State*
David S. McGuinness A D , Bun Chan B , George J. P. Britovsek C D and Brian F. Yates AA School of Physical Sciences – Chemistry, University of Tasmania, Private Bag 75, Hobart, Tas. 7001, Australia.
B School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
C Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK.
D Corresponding authors. Email: david.mcguinness@utas.edu.au; g.britovsek@imperial.ac.uk
Australian Journal of Chemistry 67(10) 1481-1490 https://doi.org/10.1071/CH14436
Submitted: 4 July 2014 Accepted: 28 August 2014 Published: 10 September 2014
Abstract
A model for the homogeneous Cr-PNP (PNP = diphosphinoamine) ethylene trimerisation and tetramerisation catalyst system has been studied theoretically, with the aim of identifying suitable density functional theory methods for treatment of this catalyst, and evaluating the likely oxidation and spin states of the active species. Benchmarking studies involving high-level treatment reveal the difficulty of accurately calculating the thermochemistry of this system, and suggest that local density functionals, such as M06L, probably provide the best option. Density functional theory modelling of catalyst activation and the first steps of oligomerisation up until 1-hexene formation appears to favour a CrI–CrIII mechanism, involving spin surface crossing from sextet to quartet states.
References
[1] W. Kaminsky, M. Arndt, in Applied Homogenous Catalysis with Organometallic Compounds (Eds B. Cornils, W. A. Herrmann) 1996, Vol. 1, pp. 220–236 (VCH: Weinheim, Germany).[2] S. Muthukumaru Pillai, M. Ravindranathan, S. Sivaram, Chem. Rev. 1986, 86, 353.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. Skupińska, Chem. Rev. 1991, 91, 613.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Forestière, H. Olivier-Bourbigou, L. Saussine, Oil Gas Sci. Technol. 2009, 64, 649.
| Crossref | GoogleScholarGoogle Scholar |
[5] H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M. Waymouth, Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFeltr8%3D&md5=3a961ce63bd913c27c441bc3e96992a3CAS |
[6] G. J. P. Britovsek, V. C. Gibson, D. F. Wass, Angew. Chem. Int. Ed. 1999, 38, 428.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslyjurY%3D&md5=2b34fafae6d2968ebae5b894721c46a2CAS |
[7] V. C. Gibson, S. K. Spitzmesser, Chem. Rev. 2003, 103, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCmsrc%3D&md5=aa140f71a5d3c4403496aea0f18d8257CAS | 12517186PubMed |
[8] W. Keim, Angew. Chem. Int. Ed. 2013, 52, 12492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WmtbzI&md5=f993494bef873888a01e3233c3dbbaf6CAS |
[9] D. S. McGuinness, Chem. Rev. 2011, 111, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmsbfF&md5=44a784a2f464be0e21d88a8f36811d8aCAS | 20873753PubMed |
[10] T. Agapie, Coord. Chem. Rev. 2011, 255, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFent7o%3D&md5=1abc98310aeaf2572186d4273236a50fCAS |
[11] P. W. N. M. van Leeuwen, N. D. Clément, M. J.-L. Tschan, Coord. Chem. Rev. 2011, 255, 1499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVWhtrk%3D&md5=cd2d93310b61cf0d80cafd68497740e6CAS |
[12] J. T. Dixon, M. J. Green, F. M. Hess, D. H. Morgan, J. Organomet. Chem. 2004, 689, 3641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVKgt74%3D&md5=d9ab99d8bd54c3cd8bcc4a9de58b37a2CAS |
[13] D. F. Wass, Dalton Trans. 2007, 816.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslSrtr4%3D&md5=7a320cfcf65f988785d7e9bee750efe1CAS | 17297506PubMed |
[14] A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid, S. Kuhlmann, J. Am. Chem. Soc. 2004, 126, 14712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1KmsLY%3D&md5=c6facb1277bdd6a5bddfcdb5fb845dd9CAS | 15535683PubMed |
[15] O. L. Sydora, T. C. Jones, B. L. Small, A. J. Nett, A. A. Fischer, M. J. Carney, ACS Catal. 2012, 2, 2452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOru7nJ&md5=5df3b1c5fd61db657f93bd3d49329fb2CAS |
[16] Y. Shaikh, K. Albahily, M. Sutcliffe, V. Fomitcheva, S. Gambarotta, I. Korobkov, R. Duchateau, Angew. Chem. Int. Ed. 2012, 51, 1366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWquw%3D%3D&md5=9a2881ee646c655ef3be9c6147eff169CAS |
[17] Y. Shaikh, J. Gurnham, K. Albahily, S. Gambarotta, I. Korobkov, Organometallics 2012, 31, 7427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKhu7bL&md5=a8cb70f3ad3aceff48ce6e68ffcfeab2CAS |
[18] T. E. Stennett, T. W. Hey, L. T. Ball, S. R. Flynn, J. Radcliffe, C. L. McMullin, R. L. Wingad, D. F. Wass, ChemCatChem 2013, 5, 2946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVegtLs%3D&md5=683ff32ae2fc508081bf627117bc7c3aCAS |
[19] A. Carter, S. A. Cohen, N. A. Cooley, A. Murphy, J. Scutt, D. F. Wass, Chem. Commun. 2002, 858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislSgt70%3D&md5=cfd491e99272fd3772bf4936f6190e4bCAS |
[20] K. Blann, A. Bollmann, J. T. Dixon, F. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto, M. Overett, Chem. Commun. 2005, 620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVOqtg%3D%3D&md5=1d8a43872a1ed12dd799fde0fb8158f3CAS |
[21] M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto, Chem. Commun. 2005, 622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVOqtw%3D%3D&md5=eff80ead4b093e3ca44b11260dcacb96CAS |
[22] R. D. Köhn, Angew. Chem. Int. Ed. 2008, 47, 245.
| Crossref | GoogleScholarGoogle Scholar |
[23] Y. Yang, Z. Liu, L. Zhong, P. Qiu, Q. Dong, R. Cheng, J. Vanderbilt, B. Liu, Organometallics 2011, 30, 5297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFahurzO&md5=a8595f5ff87bcf4984bb667d4cb8c2e7CAS |
[24] Z. Liu, R. Cheng, X. He, B. Liu, ACS Catal. 2013, 3, 1172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2gtL0%3D&md5=881d36d1777e6f6f0a2026f51c9c42acCAS |
[25] W. Jiang, N. J. DeYonker, J. J. Determan, A. K. Wilson, J. Phys. Chem. A 2012, 116, 870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjtr%2FJ&md5=40518eaba19edf3820e59bd9c652d96fCAS | 22107449PubMed |
[26] B. Chan, A. Karton, K. Raghavachari, L. Radom, J. Chem. Theory Comput. 2012, 8, 3159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1egtr3N&md5=cad18ed66904aa3232edd49a31884509CAS |
[27] W. Jiang, N. J. DeYonker, A. K. Wilson, J. Chem. Theory Comput. 2012, 8, 460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Glsb3L&md5=e6687b8da8ec033f38ca92dda62695b9CAS |
[28] W. Janse van Rensburg, J.-A. van den Berg, P. J. Steynberg, Organometallics 2007, 26, 1000.
| Crossref | GoogleScholarGoogle Scholar |
[29] Z. Liu, R. Cheng, X. He, X. Wu, B. Liu, J. Phys. Chem. 2012, 116, 7538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFektrs%3D&md5=4dfa99adb88a31b3f91c9fb8bc760431CAS |
[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A1 2009 (Gaussian, Inc.: Wallingford, CT).
[31] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, version 2010.1 2010 (University College Cardiff Consultants Limited: Cardiff).
[32] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFGls7s%3D&md5=a2fe98100ade57d91077e09d917aeeadCAS |
[33] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS | 9900728PubMed |
[34] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
[35] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |
[36] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=5b6aaebe0235eedcc65b0c15054348b5CAS |
[37] D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12ntLo%3D&md5=5521917ec3a7e14312265b58bedd45a2CAS |
[38] J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFSk&md5=5f33c61b4b3c7462bd8c6b0148664033CAS |
[39] J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
| Crossref | GoogleScholarGoogle Scholar |
[40] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
| Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |
[41] R. Peverati, D. G. Truhlar, J. Phys. Chem. Lett. 2012, 3, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmtbzE&md5=b7920bc6b2bb17e7d301ef7a49b3c2f5CAS |
[42] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=34ea652dded9d8cff09e4a5978ecff9fCAS | 16240044PubMed |
[43] F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFOns7s%3D&md5=c031336d50a00a0c9837d73ace3806abCAS |
[44] N. J. Mayhall, K. Raghavachari, P. C. Redfern, L. A. Curtis, J. Phys. Chem. A 2009, 113, 5170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFalurk%3D&md5=46b5ce4b6bbcb5b54bfbaaf29996b1d3CAS | 19341257PubMed |
[45] B. Chan, L. Radom, J. Chem. Theory Comput. 2012, 8, 4259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjtbvP&md5=56309e8cab0a0776e2cbe045edf64e1bCAS |
[46] B. Chan, W.-L. Yim, J. Chem. Theory Comput. 2013, 9, 1964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Cqtr8%3D&md5=9ac5b0955a852377441898953853f1dfCAS |
[47] B. Chan, L. Radom, J. Chem. Theory Comput. 2013, 9, 4769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgt7nF&md5=de45bfacc465cf3758e61f0b8076d84aCAS |
[48] A. Köhn, Chem. Modell. 2013, 10, 32.
| Crossref | GoogleScholarGoogle Scholar |
[49] B. Chan, G. E. Ball, J. Chem. Theory Comput. 2013, 9, 2199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1Wks7w%3D&md5=603053200b2ad6328dd82dbca7238811CAS |
[50] J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Acc. 1998, 99, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFersbY%3D&md5=7cca13837f0fea81882c8ca435a56d4dCAS |
[51] K. Blann, A. Bollmann, J. T. Dixon, A. Neveling, D. H. Morgan, H. Maumela, E. Killian, F. Hess, S. Otto, L. Pepler, H. Mahomed, M. Overett, WO 2004/056479 (Sasol Technology) 2004.
[52] E. Y.-X. Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFKntb0%3D&md5=87794ea3414c14103bfd5ef4fe02595bCAS |
[53] D. S. McGuinness, M. Overett, R. P. Tooze, K. Blann, J. T. Dixon, A. M. Z. Slawin, Organometallics 2007, 26, 1108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVygtA%3D%3D&md5=b16f0566d498fd20fddd74945fb090d9CAS |
[54] D. S. McGuinness, A. J. Rucklidge, R. P. Tooze, A. M. Z. Slawin, Organometallics 2007, 26, 2561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCjurs%3D&md5=a371f72a846148cb1d046ee11ede8409CAS |
[55] T. E. Stennett, M. F. Haddow, D. F. Wass, Organometallics 2012, 31, 6960.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOgsb7N&md5=202b0052bca220ef6b515c42d25e5109CAS |
[56] S. J. Schofer, M. W. Day, L. M. Henling, J. A. Labinger, J. E. Bercaw, Organometallics 2006, 25, 2743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGqtL0%3D&md5=dd8b17a2086dfdf4b7e29b952daa247fCAS |
[57] T. Agapie, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2007, 129, 14281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Crur7M&md5=fd5ec7aab453fba4b3fb7eeade52408bCAS | 17973377PubMed |
[58] A. J. Rucklidge, D. S. McGuinness, R. P. Tooze, A. M. Z. Slawin, J. D. A. Pelletier, M. J. Hanton, P. B. Webb, Organometallics 2007, 26, 2782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslKjsLs%3D&md5=407841dfb665596f18385b54e9b85fb4CAS |
[59] L. E. Bowen, M. F. Haddow, A. G. Orpen, D. F. Wass, Dalton Trans. 2007, 1160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKksLs%3D&md5=532d91b7d8e5736c6ee7f11f236e5dc0CAS | 17339999PubMed |
[60] A. Dulai, H. de Bod, M. J. Hanton, D. M. Smith, S. Downing, S. M. Mansell, D. F. Wass, Organometallics 2009, 28, 4613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Ons74%3D&md5=0dc6150e57d892b7057e3650b2bbf7a9CAS |
[61] W. H. Monillas, J. F. Young, G. P. A. Yap, K. H. Theopold, Dalton Trans. 2013, 9198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12mtrY%3D&md5=cc32351b691ffd62a1d3c73be533a5eeCAS | 23493916PubMed |
[62] A. Brückner, J. K. Jabor, A. E. C. McConnell, P. B. Webb, Organometallics 2008, 27, 3849.
| Crossref | GoogleScholarGoogle Scholar |
[63] J. Rabeah, M. Bauer, W. Baumann, A. E. McConnell, W. F. Gabrielli, P. B. Webb, D. Selent, A. Brückner, ACS Catal. 2013, 3, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOmu73P&md5=df00d4fc7da916c7df464d9341cacc6cCAS |
[64] A. Jabri, P. Crewdson, S. Gambarotta, I. Korobkov, R. Duchateau, Organometallics 2006, 25, 715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFSh&md5=69ab79d2b28653f074c1675831f1d30bCAS |
[65] L. H. Do, J. A. Labinger, J. E. Bercaw, ACS Catal. 2013, 3, 2582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFynsr3L&md5=40d134aacfef4111f76d733917f9a255CAS |
[66] J. N. Harvey, in Principles and Applications of Density Functional Theory in Inorganic Chemistry I, Structure and Bonding (Eds N. Kaltsoyannis, J. E. McGrady) 2004, Vol. 112, pp. 151–184 (Springer: Berlin).
[67] Y. Zhao, O. Tishchenko, J. R. Gour, W. Li, J. J. Lutz, P. Piecuch, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslaktbk%3D&md5=de8bb79242766ee49834c48f1c02a0f1CAS | 19374412PubMed |
[68] D. G. Gusev, Organometallics 2013, 32, 4239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKgur3E&md5=a3c60b2d6ea519594f107739bab4266dCAS |
[69] A. N. J. Blok, P. H. M. Budzelaar, A. W. Gal, Organometallics 2003, 22, 2564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFClsr0%3D&md5=7a11b85a51b4624320c3253c7073153fCAS |
[70] S. Tobisch, T. Ziegler, Organometallics 2003, 22, 5392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptV2gs7s%3D&md5=5360e24c57e6da84a425960239c13193CAS |
[71] L. A. MacAdams, G. P. Buffone, C. D. Incarvito, J. A. Golen, A. L. Rheingold, K. H. Theopold, Chem. Commun. 2003, 1164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Ors7k%3D&md5=d2f6742d1f752fdbc5f6d232bb2f328dCAS |
[72] G. Bhandari, Y. Kim, J. M. McFarland, A. L. Rheingold, K. H. Theopold, Organometallics 1995, 14, 738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlKltrs%3D&md5=8c0fd2862298080895a8b9a79e7f55fcCAS |
[73] R. Robinson, D. S. McGuinness, B. F. Yates, ACS Catal. 2013, 3, 3006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrsrzL&md5=7edbae1b17e45e19a0f36c1c903ca23eCAS |