In Vitro Synergy Between Some Cationic Amphipathic Cyclooctapeptides and Antibiotics
Maria Ngu-Schwemlein A C , Jenna Dumond A , Lisa Rudd A B and Jean-Herbert Rigaud AA Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA.
B Current address: Pharmacore®, GMP Analytical Chemistry, High Point, NC 27265, USA.
C Corresponding author. Email: Schwemleinmn@wssu.edu
Australian Journal of Chemistry 68(2) 218-223 https://doi.org/10.1071/CH14427
Submitted: 1 July 2014 Accepted: 1 August 2014 Published: 8 October 2014
Abstract
The antimicrobial activities of some cationic amphipathic cyclooctapeptides in combination with select antibiotics are investigated. Accordingly, cyclooctapeptides (CPs 1–11) derived from the sequence cyclo[Leu-d-Leu-Leu-d-Leu-Lys-d-Lys-Lys-d-Lys] were tested against Escherichia coli and Staphylococcus aureus. Synergistic effects were evaluated in combination with tetracycline, chloramphenicol, oflaxacin, rifampicin, colistin, clindamycin, and vancomycin by the checkerboard titration assay. The results show that these cyclooctapeptides are fast acting bactericidals and are comparable to the related α-helical peptides in their activities. Significantly, some of these cyclooctapeptides exert selective synergistic effects in combination with the bacteriostatic tetracycline against S. aureus; a greater than 4-fold decrease in the minimum inhibition concentration was observed. Their synergism with the other evaluated antibiotics was generally partial or additive. Cationic amphipathic cyclooctapeptides in combination with some antibiotics could offer a possible solution to the increasing antimicrobial resistance predicament.
References
[1] World Health Organization, Antimicrobial Resistance: Global Report on Surveillance 2014 (WHO Press: Geneva).[2] Australian Group on Antimicrobial Resistance (AGAR) website. Available at: http://www.agargroup.org/publications/related (accessed 20 June 2014).
[3] R. E. W. Hancock, Lancet 1997, 349, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVamur0%3D&md5=422c6737100a7295d0ca32fa738ac318CAS |
[4] H. Jenssen, P. Hamill, R. E. W. Hancock, Clin. Microbiol. Rev. 2006, 19, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaqsrk%3D&md5=3aaecb8300b2ee11f990ac22361a5a1fCAS | 16847082PubMed |
[5] S. Fernandez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, M. R. Ghadiri, Nature 2001, 412, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCqu7w%3D&md5=f8afbbc340d09f91a46065c4ac94496aCAS | 11473322PubMed |
[6] R. E. W. Hancock, A. Rozek, FEMS Microbiol. Lett. 2002, 206, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Ontg%3D%3D&md5=d668c187ba5d933fc13441fac2f3c5c2CAS |
[7] J. T. Mika, G. Moiset, A. D. Cirac, L. Feliu, E. Bardaji, M. Planas, D. Sengupta, S. J. Marrink, B. Poolman, Biochim. Biophys. Acta 2011, 1808, 2197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVGlsbs%3D&md5=3a71d44d58195fe5541057e0c5d27c80CAS | 21586269PubMed |
[8] V. Teixeira, M. J. Feio, M. Bastos, Prog. Lipid Res. 2012, 51, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFCktrw%3D&md5=1446567e728ca802d4a484e233abf266CAS | 22245454PubMed |
[9] S. Kobayashi, Y. Hirakura, K. Matsuzaki, Biochemistry 2001, 40, 14330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotV2ks7k%3D&md5=ea31e5e25476eac2db9a4486fb698099CAS | 11724544PubMed |
[10] C. H. Lin, R. F. Hou, C. L. Shyu, W. Y. Shia, C. F. Lin, W. C. Tu, Peptides 2012, 36, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlWmtbk%3D&md5=9f8033c93c4a2a7b21f80b5b7fdcfce3CAS | 22561066PubMed |
[11] N. Jeong, J. Y. Kim, S. C. Park, J. K. Lee, R. Gopal, S. Yoo, B. K. Son, J. S. Hahm, Y. Park, K. S. Hahm, Biochem. Biophys. Res. Commun. 2010, 399, 581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamsLbM&md5=9441af66fccbff57844660bd4f186033CAS | 20682287PubMed |
[12] Y. Jiang, X. Yi, Y. Li, T. Wang, T. N. Qi, X. L. She, J. Mater. Sci. Mater. Med. 2012, 23, 1723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVWmtrc%3D&md5=56637422c9cf0e8e0db318911cbc9b95CAS | 22528077PubMed |
[13] S. P. Sharma, J. Sharma, S. S. Kanwar, V. S. Chauhan, Int. J. Antimicrob. Agents 2012, 39, 146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVGitw%3D%3D&md5=5f385c045a661848b18b4105ef199222CAS | 22118799PubMed |
[14] Y. Zhang, Y. Liu, Y. Sun, Q. Liu, X. Wang, Z. Li, J. Hao, Curr. Microbiol. 2014, 68, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOksLo%3D&md5=9e4eb28762108240456216a656e7bab5CAS | 24474334PubMed |
[15] Y. Park, S. N. Park, S. C. Park, S. O. Shin, J. Y. Kim, S. J. Kang, M. H. Kim, C. Y. Jeong, K. S. Hahm, Biochim. Biophys. Acta 2006, 1764, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Sqsw%3D%3D&md5=6f94e96dc5bc4dbf5587212edd55f89eCAS | 16344012PubMed |
[16] H. Urakawa, K. Yamada, K. Komagoe, S. Ando, H. Oku, T. Katsu, I. Matsuo, Bioorg. Med. Chem. Lett. 2010, 20, 1771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlehtL8%3D&md5=9234be6e874609c889bfba5ec28e9297CAS | 20138759PubMed |
[17] M. Jelokhani-Niaraki, E. J. Prenner, C. M. Kay, R. N. McElhaney, R. S. Hodges, J. Pept. Res. 2002, 60, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyksro%3D&md5=67c6e2d5f3818001d01b488b9b71fe7eCAS | 12081624PubMed |
[18] Y. X. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, R. S. Hodges, Antimicrob. Agents Chemother. 2007, 51, 1398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlOjtLY%3D&md5=3b55c1efb47a9ac0a3826a2b75fe7225CAS |
[19] S. Fernandez-Lopez, H.-S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, M. R. Ghadiri, Nature 2001, 412, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCqu7w%3D&md5=f8afbbc340d09f91a46065c4ac94496aCAS | 11473322PubMed |
[20] T. Stevens, N. McNeil, X. Lin, M. Ngu-Schwemlein, Int. J. Med. Chem. 2012, 2012, 1.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. I. Chan, E. J. Prenner, H. J. Vogel, Biochim. Biophys. Acta 2006, 1758, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanu7rP&md5=4bf6d4dc303e16236c1c1198a5721f6eCAS | 16756942PubMed |
[22] C. Junkes, A. Wessolowski, S. Farnaud, R. W. Evans, L. Good, M. Bienert, M. Dathe, J. Pept. Sci. 2008, 14, 535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslyjurY%3D&md5=cb3f50fefb0356f2629b19195b5a6284CAS | 17985396PubMed |
[23] B. Bechinger, K. Lohner, Biochim. Biophys. Acta, Biomembr. 2006, 1758, 1529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVamsr7K&md5=c16e00cfca3bc0215b30d6ec86aafb18CAS |
[24] R. Chen, A. E. Mark, Eur. Biophys. J. 2011, 40, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1ajsrs%3D&md5=56c2d83ce376dff7d12de7cff78dd7e8CAS | 21267557PubMed |
[25] B. Legrand, M. Laurencin, J. Sarkis, E. Duval, L. Mouret, J.-F. Hubert, M. Collen, V. Vie, C. Zatylny-Gaudin, J. Henry, M. Baudy-Floc’h, A. Bondon, Biochim. Biophys. Acta, Biomembr. 2011, 1808, 106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFart73N&md5=bebe50db0df1f82fe990263239843a0bCAS |
[26] M. L. Mangoni, N. Papo, G. Mignogna, D. Andreu, Y. Shai, D. Barra, M. Simmaco, Biochemistry 2003, 42, 14023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Witbk%3D&md5=c9ce377dc8d3733731283600d965ad30CAS | 14636071PubMed |
[27] C. L. Friedrich, D. Moyles, T. J. Beveridge, R. E. Hancock, Antimicrob. Agents Chemother. 2000, 44, 2086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlShsLw%3D&md5=32840fa0ee69fa8d5eb28a26712542dbCAS | 10898680PubMed |
[28] V. Dartois, J. Sanchez-Quesada, E. Cabezas, E. Chi, C. Dubbelde, C. Dunn, J. Granja, C. Gritzen, D. Weinberger, M. R. Ghadiri, T. R. Parr, Antimicrob. Agents Chemother. 2005, 49, 3302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFChtbg%3D&md5=92fe103f8d839b2ea5cc73f540342a5dCAS | 16048940PubMed |
[29] J. Sanchez-Quesada, M. R. Ghadiri, H. Bayley, O. Braha, J. Am. Chem. Soc. 2000, 122, 11757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyhsLs%3D&md5=cf01ea9953f21019a209f47c5d7763ffCAS |
[30] I. Chopra, M. Roberts, Microbiol. Mol. Biol. Rev. 2001, 65, 232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVKmu7Y%3D&md5=9d2e59edcf450484780aa0cff6cad2fcCAS | 11381101PubMed |
[31] J. Spizek, T. Rezanka, Appl. Microbiol. Biotechnol. 2004, 64, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFyis70%3D&md5=325c57722c12142b6d3c6eae939ab14cCAS | 14762701PubMed |
[32] M. P. Williamson, D. H. Williams, Eur. J. Biochem. 1984, 138, 345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlKktg%3D%3D&md5=4eb1a542b4f88891304badc1cacb4666CAS | 6697991PubMed |
[33] J. L. Allison, R. E. Hartman, R. S. Hartman, A. D. Wolfe, J. Ciak, F. E. Hahn, J. Bacteriol. 1962, 83, 609.
| 1:STN:280:DyaF38%2FgtFylsQ%3D%3D&md5=756b7aacc4009389240f05939f20cf65CAS | 13860618PubMed |
[34] K. Sato, Y. Inoue, T. Fuji, H. Aoyama, S. Mitsuhashi, Infection 1986, 14, S226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXpvFaksQ%3D%3D&md5=109996d31c1cc1656db2c8adbd60dfacCAS | 3028966PubMed |
[35] H. G. Floss, T.-W. Yu, Chem. Rev. 2005, 105, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFGjsw%3D%3D&md5=b7664daf01ad03a4d8f58b1e1c75c27dCAS | 15700959PubMed |
[36] H. L. David, N. Rastogi, Antimicrob. Agents Chemother. 1985, 27, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFyhsL0%3D&md5=3ff2ee74e640f780f0d5ab334c85874eCAS | 4015067PubMed |
[37] M. Ngu-Schwemlein, P. Butko, B. Cook, T. Whigham, J. Pept. Res. 2005, 66, 72.
| Crossref | GoogleScholarGoogle Scholar | 16650063PubMed |
[38] W. D. Gates, J. Rostas, B. Kakati, M. Ngu-Schwemlein, J. Mol. Struct. 2005, 733, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKksr8%3D&md5=4eb06090a53db3d6078b686aee847275CAS |
[39] Clinical and Laboratory Standards Institute (CLSI), former National Committee for Clinical Laboratory Standards (NCCLS), Approved Standards: M07–A8-Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically 2009, 8th edn, Vol. 29, No. 2, pp. 1–30 (CLSI: Villanova, PA).
[40] S. C. Chang, Y. C. Chen, K. T. Luh, W. C. Hsieh, Diagn. Microbiol. Infect. Dis. 1995, 23, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFSluro%3D&md5=4a1be017bccba9ac8baeb36b58b80d58CAS | 8849654PubMed |
[41] A. Giacometti, O. Cirioni, W. Kamysz, G. D’Amato, C. Silvestri, M. S. Del Prete, J. Lukasiak, G. Scalise, Peptides 2003, 24, 1315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFaj&md5=a28b752560eb556968d9c83bce9ed7ddCAS | 14706545PubMed |
[42] G. M. Eliopoulos, R. C. Moellering, in Antimicrobial Combinations in Antibiotics in Laboratory Medicine (Ed. V. Lorian) 1991, pp. 432–492 (The Williams & Wilkins Co: Baltimore, MD).