Coordination Polymers Constructed from TCNQ2– Anions and Chelating Ligands
Brendan F. Abrahams A B , Robert W. Elliott A and Richard Robson A BA School of Chemistry, University of Melbourne, Victoria 3010, Australia.
B Corresponding authors. Email: bfa@unimelb.edu.au; r.robson@unimelb.edu.au
Australian Journal of Chemistry 67(12) 1871-1877 https://doi.org/10.1071/CH14414
Submitted: 24 June 2014 Accepted: 31 July 2014 Published: 27 October 2014
Abstract
Coordination polymers containing tetracyanoquinodimethane (TCNQ) in its dianionic form, TCNQ–II, have been formed by combining the acid form of the dianion, TCNQH2, with divalent metal centres in the presence of chelating ligands such as 2,2′-bipyridine (bipy) and 1,10-phenanthroline (phen). When MnII or CdII is employed, two-dimensional (2D) corrugated sheet structures with the formula MII(TCNQ–II)L (M = Mn, Cd; L = bipy, phen) are obtained. In contrast, when CoII is used as the metal centre a complex three-dimensional (3D) structure of composition [CoII(TCNQ–II)(phen)] is formed. Despite the significant differences between the 2D and 3D network structures, the metal coordination geometry and the binding mode of the TCNQ dianion are very similar in all cases.
References
[1] J. Ferraris, D. O. Cowan, V. Walatka, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXpslGhug%3D%3D&md5=a933a9a148995a238f7687cba0d076a2CAS |
[2] (a) H. Miyasaka, T. Madanbashi, K. Sugimoto, Y. Nakazawa, W. Wernsdorfer, K.-I. Sugiura, M. Yamashita, C. Coulon, R. Clerac, Chem. – Eur. J. 2006, 12, 7028.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaktbvL&md5=852b0115da1180ec1f1d61e40d3c7ae6CAS | 16892471PubMed |
(b) H. Oshio, E. Ino, T. Ito, Y. Maeda, Bull. Chem. Soc. Jpn. 1995, 68, 889.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Campana, K. R. Dunbar, X. Ouyang, Chem. Commun. 1996, 2427.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Zhao, R. A. Heintz, K. R. Dunbar, R. D. Rogers, J. Am. Chem. Soc. 1996, 118, 12844.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Zhao, R. A. Heintz, X. Ouyang, K. R. Dunbar, C. F. Campana, R. D. Rogers, Chem. Mater. 1999, 11, 736.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K. R. Dunbar, Inorg. Chem. 1999, 38, 144.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. A. O’Kane, R. Clerac, H. Zhao, X. Ouyang, J. R. Galan-Mascaros, R. Heintz, K. R. Dunbar, J. Solid State Chem. 2000, 152, 159.
| Crossref | GoogleScholarGoogle Scholar |
(h) L. Shields, J. Chem. Soc., Faraday Trans. 2 1985, 81, 1.
| Crossref | GoogleScholarGoogle Scholar |
(i) H. Miyasaka, C. S. Campos-Fernandez, R. Clerac, K. R. Dunbar, Angew. Chem., Int. Ed. 2000, 39, 3831.
| Crossref | GoogleScholarGoogle Scholar |
(j) H. Zhao, J. M. J. Bazile, J. R. Galan-Mascaros, K. R. Dunbar, Angew. Chem., Int. Ed. 2003, 42, 1015.
| Crossref | GoogleScholarGoogle Scholar |
(k) H. Miyasaka, T. Izawa, N. Takahashi, M. Yamashita, K. R. Dunbar, J. Am. Chem. Soc. 2006, 128, 11358.
| Crossref | GoogleScholarGoogle Scholar |
(l) N. Lopez, H. Zhao, A. V. Prosvirin, A. Chouai, M. Shatruk, K. R. Dunbar, Chem. Commun. 2007, 4611.
| Crossref | GoogleScholarGoogle Scholar |
(m) N. Lopez, H. Zhao, A. Ota, A. V. Prosvirin, E. W. Reinheimer, K. R. Dunbar, Adv. Mater. 2010, 22, 986.
| Crossref | GoogleScholarGoogle Scholar |
(n) C. Avendano, Z. Zhang, A. Ota, H. Zhao, K. R. Dunbar, Angew. Chem., Int. Ed. 2011, 50, 6543.
| Crossref | GoogleScholarGoogle Scholar |
(o) M. Ballesteros-Rivas, H. Zhao, A. Prosvirin, E. W. Reinheimer, R. A. Toscano, J. Valdes-Martınez, K. R. Dunbar, Angew. Chem., Int. Ed. 2012, 51, 5124.
| Crossref | GoogleScholarGoogle Scholar |
(p) H. Zhao, R. A. Heintz, X. Ouyang, G. Grandinetti, J. Cowen, K. R. Dunbar, in Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets, NATO ASI series (Eds J. Veciana, C. Rovira, D. B. Amabillino) 1999, Vol. 518, pp. 353–376 (Kluwer Academic Publishers: Dordrecht).
[3] S. Shimomura, R. Matsuda, T. Tsujino, T. Kawamura, S. Kitagawa, J. Am. Chem. Soc. 2006, 128, 16416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yrtrjJ&md5=b7ae1291d44408b22fa6a5a13a9ab874CAS | 17177347PubMed |
[4] S. Shimomura, N. Yanai, R. Matsuda, S. Kitagawa, Inorg. Chem. 2011, 50, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ks7bJ&md5=1f5d432db5de86651a3982bfe96e6c2dCAS | 21126018PubMed |
[5] X. Zhang, Z. Zhang, H. Zhao, J.-G. Mao, K. R. Dunbar, Chem. Commun. 2014, 50, 1429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWmsg%3D%3D&md5=d80a6b6b2296fbb98307fb8a9b5a7d0bCAS |
[6] (a) B. F. Abrahams, T. A. Hudson, R. Robson, Cryst. Growth Des. 2008, 8, 1123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ersr4%3D&md5=a23c6cc70ee0d38cbf168b7c96606dd2CAS |
(b) B. F. Abrahams, R. W. Elliott, T. A. Hudson, R. Robson, CrystEngComm 2012, 14, 351.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. R. Saber, A. V. Prosvirin, B. F. Abrahams, R. W. Elliott, R. Robson, K. R. Dunbar, Chem. – Eur. J. 2014, 20, 7593.
| Crossref | GoogleScholarGoogle Scholar |
[7] B. F. Abrahams, R. W. Elliott, T. A. Hudson, R. Robson, Cryst. Growth Des. 2013, 13, 3018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVKhtL4%3D&md5=b2810f18312de75a4f1c7a0a45f36a3eCAS |
[8] B. F. Abrahams, R. W. Elliott, T. A. Hudson, R. Robson, Cryst. Growth Des. 2010, 10, 2860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvF2qt7w%3D&md5=d6cc07f211b9b88c12d14cfa16fa7d26CAS |
[9] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |
[10] L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=6ea51a6d337c4eb7b42c7387a614af42CAS |