Pd-Catalyzed Dehydrogenative Cross-Coupling of 1,4-Quinones with N,N′-Dialkyluracils
Ebrahim Kianmehr A D , Mehran Rezazadeh Khalkhali A , Masoud Rezaeefard A , Khalid Mohammed Khan B and Seik Weng Ng CA School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
B H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
C Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia.
D Corresponding author. Email: kianmehr@khayam.ut.ac.ir
Australian Journal of Chemistry 68(1) 165-169 https://doi.org/10.1071/CH14412
Submitted: 24 June 2014 Accepted: 3 September 2014 Published: 13 November 2014
Abstract
A straightforward and efficient method for the palladium-catalyzed direct cross-coupling of quinones with N,N′-dialkyluracils via 2-fold C–H activation has been developed to rapidly construct uracil substituted quinone structural motifs.
References
[1] (a) For selected reviews, see: D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2ltrnF&md5=054b53cb119302bcd9f8ceedf03b0aeaCAS | 22148885PubMed |
(b) S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2012, 51, 8960.[Angew. Chem. 2012, 124, 9092]
| Crossref | GoogleScholarGoogle Scholar |
(e) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. Ackermann, Chem. Rev. 2011, 111, 1315.
| Crossref | GoogleScholarGoogle Scholar |
(g) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062.[Angew. Chem. 2011, 123, 11256]
| Crossref | GoogleScholarGoogle Scholar |
(h) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174.
| Crossref | GoogleScholarGoogle Scholar |
[2] I. Moritani, Y. Fujiwara, Tetrahedron Lett. 1967, 8, 1119.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) W. Liu, X. Yu, C. Kuang, Org. Lett. 2014, 16, 1798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2mtr8%3D&md5=0fde19c6e5e169daea4aef611f91efd2CAS | 24621317PubMed |
(b) N.-N. Li, Y.-L. Zhang, S. Mao, Y.-R. Gao, D.-D. Guo, Y.-Q. Wang, Org. Lett. 2014, 16, 2732.
| Crossref | GoogleScholarGoogle Scholar |
(c) D.-W. Gao, Y.-C. Shi, Q. Gu, Z. L. Zhao, S.-L. You, J. Am. Chem. Soc. 2013, 135, 86.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Kuninobu, T. Iwanaga, T. Omura, K. Takai, Angew. Chem. Int. Ed. 2013, 52, 4431.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. Sun, G. Shan, Y. Sun, Y. Rao, Angew. Chem. Int. Ed. 2013, 52, 4440.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Sharma, I. A. Khan, A. K. Saxena, Adv. Synth. Catal. 2013, 355, 673.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. Wu, P. Y. Choy, F. Mao, F. Y. Kwong, Chem. Commun. 2013, 49, 689.
| Crossref | GoogleScholarGoogle Scholar |
(h) Y. Wu, P. Y. Choy, F. Mao, F. Y. Kwong, Chem. Commun. 2013, 49, 689.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Min, Y. Kim, S. Hong, Chem. Commun. 2013, 49, 196.
| Crossref | GoogleScholarGoogle Scholar |
(j) S. R. Chidipudi, M. D. Wieczysty, I. Khan, H. W. Lam, Org. Lett. 2013, 15, 570.
| Crossref | GoogleScholarGoogle Scholar |
(k) J. Shao, W. Chen, M. A. Giulianotti, R. A. Houghten, Y. Yu, Org. Lett. 2012, 14, 5452.
| Crossref | GoogleScholarGoogle Scholar |
(l) W.-L. Chen, Y.-R. Gao, S. Mao, Y.-L. Zhang, Y.-F. Wang, Y.-Q. Wang, Org. Lett. 2012, 14, 5920.
| Crossref | GoogleScholarGoogle Scholar |
(m) S. R. Kandukuri, M. Oestreich, J. Org. Chem. 2012, 77, 8750.
| Crossref | GoogleScholarGoogle Scholar |
(n) M. V. Varaksin, I. A. Utepova, O. N. Chupakhin, V. N. Charushin, J. Org. Chem. 2012, 77, 9087.
| Crossref | GoogleScholarGoogle Scholar |
(o) Z. Yin, P. Sun, J. Org. Chem. 2012, 77, 11339.
| Crossref | GoogleScholarGoogle Scholar |
(p) Z.-H. Guan, M. Chen, Z.-H. Ren, J. Am. Chem. Soc. 2012, 134, 17490.
| Crossref | GoogleScholarGoogle Scholar |
(q) S. R. Kandukuri, M. Oestreich, J. Org. Chem. 2012, 77, 8750.
| Crossref | GoogleScholarGoogle Scholar |
(r) Y. W. Kim, M. J. Niphakis, G. I. Georg, J. Org. Chem. 2012, 77, 9496.
| Crossref | GoogleScholarGoogle Scholar |
(s) J. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170.
| Crossref | GoogleScholarGoogle Scholar |
(t) C. Scheuermann, Chem. Asian J. 2010, 5, 436.
| Crossref | GoogleScholarGoogle Scholar |
(u) M.-Z. Wang, C.-Y. Zhou, M.-K. Wong, C.-M. Che, Chem. – Eur. J. 2010, 16, 5723.
| Crossref | GoogleScholarGoogle Scholar |
(v) K. Fagnou, in C-H Activation (Eds J.-Q. Yu, Z. Shi) 2010, Topics in Current Chemistry Vol. 292, pp. 35–56 (Springer: Berlin).
(w) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010, 110, 824.
| Crossref | GoogleScholarGoogle Scholar |
(x) L.-M. Xu, B.-J. Li, Z. Yang, Z.-J. Shi, Chem. Soc. Rev. 2010, 39, 712.
| Crossref | GoogleScholarGoogle Scholar |
(y) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147.
| Crossref | GoogleScholarGoogle Scholar |
(z) A. Pintér, A. Sud, D. Sureshkumar, M. Klussmann, Angew. Chem. 2010, 122, 5124.[Angew. Chem. Int. Ed. 2010, 49, 5004]
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Miyashita, T. Imanishi, Chem. Rev. 2005, 105, 4515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKgs7jO&md5=133578f9fc583928d71138b8cbccf782CAS | 16351052PubMed |
[5] A. F. Barrero, E. J. Alvarez-Manzaneda, M. Mar Herrador, R. Chahboun, P. Galera, Bioorg. Med. Chem. Lett. 1999, 9, 2325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslWhtbc%3D&md5=aba44043129453ae0b516110eabd26caCAS | 10476862PubMed |
[6] S. Loya, R. Tal, R. Y. Kashman, A. Hizi, Antimicrob. Agents Chemother. 1990, 34, 2009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnsVOjsQ%3D%3D&md5=802ae2081072a5e0ca88d262fa9f166eCAS | 1705412PubMed |
[7] M. L. Bourquet-Kondracki, A. Longeon, E. Morel, M. Guyot, Int. J. Immunopharmacol. 1991, 13, 393.
| Crossref | GoogleScholarGoogle Scholar |
[8] T. Itahara, J. Chem. Soc., Chem. Commun. 1981, 859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVemsrw%3D&md5=be09cc2d9a3bddf9663c5cfb4d4335cbCAS |
[9] T. Itahara, J. Org. Chem. 1985, 50, 5546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjtlyisQ%3D%3D&md5=f0f506eea40bb3ee03ecd90a68c15496CAS |
[10] P. Hu, S. Huang, J. Xu, Z.-J. Shi, W. Su, Angew. Chem. Int. Ed. 2011, 50, 9926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSltb3F&md5=2f798c626c6556388bfe954ef1f54addCAS |
[11] (a) C. Chen, D. Wu, Z. Guo, Q. Xie, G. J. Reinhart, A. Madan, J. Wen, T. Chen, C. Q. Huang, M. Chen, Y. Chen, F. C. Tucci, M. Rowbottom, J. Pontillo, Y.-F. Zhu, W. Wade, J. Saunders, H. Bozigian, R. S. Struthers, J. Med. Chem. 2008, 51, 7478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOrs73M&md5=5c9b68ff56723e8fec6ed5c6f4fe2b2bCAS | 19006286PubMed |
(b) C. F. Regan, Z. Guo, Y. Chen, C. Q. Huang, M. Chen, W. Jiang, J. K. Rueter, T. Coon, C. Chen, J. Saunders, M. S. Brown, S. F. Betz, R. S. Struthers, C. Yang, J. Wen, A. Madan, Y.-F. Zhu, Bioorg. Med. Chem. Lett. 2008, 18, 4503.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Medda, R. J. M. Russell, M. Higgins, A. R. Mc Carthy, J. Campbell, A. M. Z. Slawin, D. P. Lane, S. Lain, N. J. Westwood, J. Med. Chem. 2009, 52, 2673.
| Crossref | GoogleScholarGoogle Scholar |
[12] T. Hara, H. Araki, M. Kusaka, M. Harada, N. Cho, J. Clin. Endocrinol. Metab. 2003, 88, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFClsbc%3D&md5=5f629b62611ec0d90f1e4d9495d9e0c8CAS | 12679460PubMed |
[13] D. A. Theocharis, C. Coutsogeorgopoulos, Biochemistry 1992, 31, 5861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Sjsb8%3D&md5=09976ebd9129103b00b48c276648e125CAS | 1610829PubMed |
[14] K. Wright, Nature 1986, 323, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FhsVOksw%3D%3D&md5=bafad6b9428e6bb957e4305029ea28cfCAS | 3463865PubMed |
[15] P. L. Dordoni, L. Frassanito, M. F. Bruno, R. Proietti, R. De Cristofaro, G. Ciabattoni, G. Ardito, R. Crocchiolo, R. Landolfi, B. Rocca, Br. J. Haematol. 2004, 125, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFOnsLc%3D&md5=6d81e86a15226d5feb87723a236ede7dCAS | 15015973PubMed |
[16] M. Cernova, R. Pohl, M. Hocek, Eur. J. Org. Chem. 2009, 2009, 3698.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. Cernova, I. Cˇernˇa, R. Pohl, M. Hocek, J. Org. Chem. 2011, 76, 5309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGmu7o%3D&md5=677957eaec6aca2ff7ba9aa09e2f3a0fCAS | 21591730PubMed |
[18] W. Liu, S. Wang, Q. Zhang, J. Yu, J. Li, Z. Xie, H. Cao, Chem. – Asian J. 2014, 9, 2436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2ju7%2FK&md5=f81bc440b8b8eeb4ff196c1d8ee7805dCAS | 24990766PubMed |
[19] Y.-Y. Yu, G. I. Georg, Chem. Commun. 2013, 49, 3694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2ls7s%3D&md5=2a3b8d953c2be0dfeb9c86aee625a760CAS |