Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Manganese(ii) Oxazolidine Nitroxide Chelates: Structure, Magnetism, and Redox Properties

Ian A. Gass A B , Mousa Asadi A , David W. Lupton A , Boujemaa Moubaraki A , Alan M. Bond A , Si-Xuan Guo A and Keith S. Murray A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Current address: School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.

C Corresponding author. Email: keith.murray@monash.edu

Australian Journal of Chemistry 67(11) 1618-1624 https://doi.org/10.1071/CH14390
Submitted: 17 June 2014  Accepted: 14 August 2014   Published: 15 September 2014

Abstract

The mononuclear oxazolidine nitroxide complex [MnII(L)2](ClO4)2 (1) (L, 4-dimethyl-2,2-di(2-pyridyl)oxazolidine N-oxide) has been synthesized and investigated using single-crystal X-ray diffraction, variable-temperature magnetic susceptibility measurements, and electrochemistry. The structural analysis reveals bond lengths compatible with a linear L–MnII–L arrangement where the ligands are in the neutral ligand form and the central MnII ion is high spin (S = 5/2). Although analysis of the variable-temperature magnetic susceptibility data suggests a strong antiferromagnetic metal–radical interaction, the radical–radical intramolecular interaction could not be determined unambiguously from such fits. The resultant isolated S = 3/2 ground state is confirmed by low-temperature magnetization versus field measurements. Electrochemical studies reveal similar square schemes and redox intermediates to the previously reported analogues [FeII(L)2][BF4]2 and [CoII(L)2][NO3]2.


References

[1]  (a) S. Sproules, K. Wieghardt, Coord. Chem. Rev. 2011, 255, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFent70%3D&md5=b02e4e0029b1541a106506e1a777dca8CAS |
      (b) R. Eisenberg, H. B. Gray, Inorg. Chem. 2011, 50, 9741.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Kaim, Inorg. Chem. 2011, 50, 9752.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W. Kaim, Eur. J. Inorg. Chem. 2012, 343.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) P. Chirik, K. Wieghardt, Science 2010, 327, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlynu7w%3D&md5=062e5981d8cf7376c6f265687b286e99CAS |
      (b) Q. Cao, L. M. Dornan, L. Rogan, N. L. Hughes, M. J. Muldoon, Chem. Commun. 2014, 4524.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 2357.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. J. Gartshore, D. W. Lupton, Adv. Synth. Catal. 2010, 352, 3321.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) A. Caneschi, D. Gatteschi, R. Sessoli, P. Rey, Acc. Chem. Res. 1989, 22, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1ekur0%3D&md5=34dfa8c7be1c3cd005ec04c239eb42efCAS |
      (b) A. Caneschi, D. Gatteschi, P. Rey, Prog. Inorg. Chem. 1991, 39, 331.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, J. Am. Chem. Soc. 2011, 133, 14236.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Fortier, J. L. Le Roy, C.-H. Chen, V. Vieru, M. Murugesu, L. F. Chibotaru, D. J. Mindiola, K. G. Caulton, J. Am. Chem. Soc. 2013, 135, 14670.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W. Kaim, B. Schwederski, Coord. Chem. Rev. 2010, 254, 1580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVGjt7s%3D&md5=85152815c1a11db053ba602a3cf35906CAS |

[5]  L. Di Costanzo, M. E. Pique, D. W. Christianson, J. Am. Chem. Soc. 2007, 129, 6388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslarur4%3D&md5=5946da4c0874961bb9a59f9aa34b56daCAS | 17469833PubMed |

[6]  (a) J. Raymond, R. E. Blankenship, Coord. Chem. Rev. 2008, 252, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFChsA%3D%3D&md5=e919aa3352d2f7774cc1f9cdf17a9647CAS |
      (b) T. Yatabe, M. Kikkawa, T. Matsumoto, H. Nakai, K. Kaneko, S. Ogo, Dalton Trans. 2014, 3063.
         | Crossref | GoogleScholarGoogle Scholar |

[7]     (a) M. E. Stroupe, M. DiDonato, J. A. Tainer, Encyclopedia of Inorganic and Bioinorganic Chemistry 2011 (Wiley: New York, NY).
      (b) S. Signorella, C. Hureau, Coord. Chem. Rev. 2012, 256, 1229.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) I. A. Gass, C. J. Gartshore, D. W. Lupton, B. Moubaraki, A. Nafady, A. M. Bond, J. F. Boas, J. D. Cashion, C. Milsmann, K. Wieghardt, K. S. Murray, Inorg. Chem. 2011, 50, 3052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFChtbc%3D&md5=1a1459dcfc624aad4b018802cb40d613CAS | 21384832PubMed |
      (b) I. A. Gass, S. Tewary, A. Nafady, N. F. Chilton, C. J. Gartshore, M. Asadi, D. W. Lupton, B. Moubaraki, A. M. Bond, J. F. Boas, S.-X. Guo, G. Rajaraman, K. S. Murray, Inorg. Chem. 2013, 52, 7557.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. A. Gass, S. Tewary, G. Rajaraman, M. Asadi, D. W. Lupton, B. Moubaraki, G. Chastanet, J.-F. Létard, K. S. Murray, Inorg. Chem. 2014, 53, 5055.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Tewary, I. A. Gass, K. S. Murray, G. Rajaraman, Eur. J. Inorg. Chem. 2013, 1024.
         | Crossref | GoogleScholarGoogle Scholar |

[9]     (a) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany).
      (b) A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, C34.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  W. E. Geiger, in Laboratory Techniques in Electroanalytical Chemistry, 2nd edn (Eds P. T. Kissinger, W. R. Heineman) 1996, Ch. 23, pp. 683–717 (Marcel Dekker: New York, NY).

[11]  J. K. McCusker, A. L. Rheingold, D. N. Hendrickson, Inorg. Chem. 1996, 35, 2100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVGgs7w%3D&md5=3a2977dfb3fb753eba3cefd04dad392dCAS |

[12]  M. Marchivie, P. Guionneau, J.-F. Létard, D. Chasseau, Acta Crystallogr., Sect. B: Struct. Sci. 2005, 61, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Kambe, J. Phys. Soc. Jpn. 1950, 5, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXislSjtg%3D%3D&md5=3b0aa2846ae6f2b44a3c87422ab2acc2CAS |

[14]  N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKlsro%3D&md5=29bb57c62a460b863fb231f00759c069CAS | 23386394PubMed |