Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Design and Synthesis of Piperazine-Based Task-Specific Ionic Liquids for Liquid–Liquid Extraction of CuII, NiII, and CoII from Water

Weiyuan Xu A , Liang Wang B , Jianying Huang A , Gerui Ren A C , Dandan Xu A and Haihe Tong A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.

B Zhejiang Province Radiation Environmental Monitoring Center, Hangzhou 310012, China.

C Corresponding author. Email: rengerui@zjgsu.edu.cn

Australian Journal of Chemistry 68(5) 825-829 https://doi.org/10.1071/CH14351
Submitted: 31 May 2014  Accepted: 7 August 2014   Published: 15 October 2014

Abstract

The novel synthesis of task-specific ionic liquids (TSILs) introducing piperazine substructures was described. Piperazine functional groups were easily grafted onto an imidazolium cationic derivative via a simple four-step process starting from available materials such as imidazole, ethylene glycol, and 1-butylamine or 3-dimethylaminopropylamine. Effects of pH, temperature, and structure of functional groups on the performance of liquid–liquid extraction of Cu2+, Ni2+, and Co2+ from water were investigated. It was found that TSILs were efficient for removal of these metal ions in mild acid solutions. The TSIL with an extra nitrogen atom showed a higher capability to separate metal ions, especially for Cu2+. This may be ascribed to the intrinsic structure of the functional groups – the more coordination sites, the higher the affinity for the metal ions. Furthermore, the thermodynamics indicated that the extraction process was exothermic and spontaneous in nature.


References

[1]  M. Yurdakoç, Y. Seki, S. Karahan, K. Yurdakoç, J. Colloid Interface Sci. 2005, 286, 440.
         | Crossref | GoogleScholarGoogle Scholar | 15897055PubMed |

[2]  T. Gotoh, K. Matsushima, K. I. Kikuchi, Chemosphere 2004, 55, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVahsQ%3D%3D&md5=ed9a9d39597b072f61a98a6bd4eb0a03CAS | 14720547PubMed |

[3]  L. Fischer, T. Falta, G. Koellensperger, A. Stojanovic, D. Kogelnig, M. Galanski, R. Krachler, B. K. Keppler, S. Hann, Water Res. 2011, 45, 4601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1alurw%3D&md5=2578ba470e29fc5caed181f20bdb1270CAS | 21742365PubMed |

[4]  S. Kocaoba, T. Akyuz, Desalination 2005, 181, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFaisr%2FM&md5=bc7bf5f04ab67706a089d734ea0b0b93CAS |

[5]  F. C. Wu, R. L. Tseng, R. S. Juang, Water Res. 2001, 35, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslSlsbs%3D&md5=2dea6c24a19cf3fa967e3095d17ecb8eCAS | 11228956PubMed |

[6]  L. Zhou, Y. Wang, Z. Liu, Q. Huang, J. Hazard. Mater. 2009, 161, 995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqtrvI&md5=c7e3af5f1949bf7717ad9779cd7da79cCAS | 18538924PubMed |

[7]  M. Monier, D. Ayad, Y. Wei, A. Sarhan, J. Hazard. Mater. 2010, 177, 962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisV2rsLw%3D&md5=b7fb830608160b40ead06912371e330fCAS | 20122793PubMed |

[8]  C. Li, B. Xin, W. Xu, Q. Zhang, J. Chem. Technol. Biotechnol. 2007, 82, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1yrt7w%3D&md5=3af8a2b0020a16f8219d293a79988307CAS |

[9]  Ionic Liquids: Industrial Applications for Green Chemistry (Eds R. D. Rogers, K. R. Seddon) 2002, ACS Symposium Series 818 (American Chemical Society: Washington, DC).

[10]  R. A. Sheldon, Green Chem. 2005, 7, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsl2lt7o%3D&md5=c21ff56a69fec9bcf1a58749f93bf22dCAS |

[11]  G. T. Wei, Z. Yang, C. J. Chen, Anal. Chim. Acta 2003, 488, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVSlsL4%3D&md5=05e5aa81b7161ee6a24dffca8e949666CAS |

[12]  N. Papaiconomou, J. M. Lee, J. Salminen, M. Von Stosch, J. M. Prausnitz, Ind. Eng. Chem. Res. 2008, 47, 5080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWlsLbF&md5=ce8f07dad4c76529d2a54e036169c4d8CAS |

[13]  M. Regel-Rosocka, Separ. Purif. Technol. 2009, 66, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2htb0%3D&md5=b927abdd8ac8ef5b6e4598004887063aCAS |

[14]  R. Lertlapwasin, N. Bhawawet, A. Imyim, S. Fuangswasdi, Separ. Purif. Technol. 2010, 72, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1WisLg%3D&md5=8b37b5228c04ef2b5b08841b997f28d2CAS |

[15]  A. P. de los Rios, F. J. Hernandez-Fernandez, L. J. Lozano, S. Sanchez, J. I. Moreno, C. Godinez, J. Chem. Eng. Data 2010, 55, 605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhtrzL&md5=f1c8a107554be83860896725da49b344CAS |

[16]  J. H. Davis, Chem. Lett. 2004, 33, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSrtrY%3D&md5=ced13680af7d192f65d7176a1a409f0bCAS |

[17]  J. Hu, Q. Chen, X. Yang, F. Hu, H. Hu, Z. Yin, Separ. Purif. Technol. 2012, 87, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOhs7k%3D&md5=60205f394b8c90f72e566e80c55333f9CAS |

[18]  N. Hirayama, M. Deguchi, H. Kawasumi, T. Honjo, Talanta 2005, 65, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslyjsbs%3D&md5=c6ab54592218ce3ae7a5f5034f70746bCAS | 18969792PubMed |

[19]  K. Kidani, N. Hirayama, H. Imura, Anal. Sci. 2008, 24, 1251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Olsr3J&md5=319dbea6721f04764613834c5825bb19CAS | 18845882PubMed |

[20]  A. E. Visser, R. D. Rogers, J. Solid State Chem. 2003, 171, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Cjsb4%3D&md5=8c6a36b67c041995a494a35640637b20CAS |

[21]  T. Ajioka, S. Oshima, N. Hirayama, Talanta 2008, 74, 903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtV2ruw%3D%3D&md5=6154a52a4b4aac6961ebfe7e0e29567bCAS | 18371726PubMed |

[22]  M. L. Dietz, J. A. Dzielawa, Chem. Commun. 2001, 2124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFWqt7c%3D&md5=96eec31b49f910384b18a79bd8372510CAS |

[23]  P. K. Mohapatra, A. Sengupta, M. Iqbal, J. Huskens, W. Verboom, Inorg. Chem. 2013, 52, 2533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ehsrk%3D&md5=1d4497ab6e6e94a40eb5c71f5e2f37f6CAS | 23394577PubMed |

[24]  A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Chem. Commun. 2001, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWr&md5=ddb808c906ba95ac0cb57e2793f9c703CAS |

[25]  A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers, Environ. Sci. Technol. 2002, 36, 2523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFGmtr8%3D&md5=16ef0b6f3b5029c0a396445f2988bda2CAS | 12075816PubMed |

[26]  J. D. Holbrey, A. E. Visser, S. K. Spear, W. M. Reichert, R. P. Swatloski, G. A. Broker, R. D. Rogers, Green Chem. 2003, 5, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislCgsL8%3D&md5=300948ab8c82996913ef31968f0b2f3eCAS |

[27]  A. Ouadi, B. Gadenne, P. Hesemann, J. J. Moreau, I. Billard, C. Gaillard, S. Mekki, G. Moutiers, Chem. – Eur. J. 2006, 12, 3074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslart74%3D&md5=3990f1b7dca0920798cea188403876aaCAS | 16432910PubMed |

[28]  P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. Van Hecke, L. Van Meervelt, B. Kirchner, K. Binnemans, J. Phys. Chem. B 2006, 110, 20978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslejur0%3D&md5=4a87814623346e7280626deec74c6034CAS | 17048916PubMed |

[29]  J. R. Harjani, T. Friščić, L. R. MacGillivray, R. D. Singer, Dalton Trans. 2008, 4595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWgu7vM&md5=d8e3601bbb004a893e5fa6653882ac1eCAS | 19024358PubMed |

[30]  J. H. Olivier, F. Camerel, J. Selb, P. Retailleau, R. Ziessel, Chem. Commun. 2009, 1133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKnsrY%3D&md5=1f87bd8b9530c21c9a2a8633fbaa331aCAS |

[31]  P. Nockemann, R. Van Deun, B. Thijs, D. Huys, E. Vanecht, K. Van Hecke, L. Van Meervelt, K. Binnemans, Inorg. Chem. 2010, 49, 3351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlyqurk%3D&md5=21d9241653092cbcae08702072da47adCAS | 20184304PubMed |

[32]  A. Messadi, A. Mohamadou, S. Boudesocque, L. Dupont, E. Guillon, Separ. Purif. Technol. 2013, 107, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlSjtLk%3D&md5=c0ce887a780231aa604a11dde6073f5cCAS |

[33]  L. C. Branco, J. N. Rosa, J. J. Moura Ramos, C. A. Afonso, Chem. – Eur. J. 2002, 8, 3671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslequ70%3D&md5=1732ec176b4c29abbe76e2fd21bb4e50CAS | 12203294PubMed |

[34]  J. Fraga-Dubreuil, M. H. Famelart, J. P. Bazureau, Org. Process Res. Dev. 2002, 6, 374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFagtbw%3D&md5=336d77a708b70c729a0aa1df360413a2CAS |

[35]  Z. Jin, D. X. Xie, X. B. Zhang, Y. J. Gong, W. H. Tan, Anal. Chem. 2012, 84, 4253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVGmtL0%3D&md5=4582bb411d8cb663ac48905d2f0f9a98CAS | 22530693PubMed |

[36]  S. Ganesan, S. Natarajan, Inorg. Chem. 2004, 43, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptl2mtb0%3D&md5=e5232657218a4ea345a2171002fcdf3fCAS | 14704068PubMed |

[37]  M. J. Lim, C. A. Murray, T. A. Tronic, K. E. deKrafft, A. N. Ley, J. C. deButts, R. D. Pike, H. Lu, H. H. Patterson, Inorg. Chem. 2008, 47, 6931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFGqurw%3D&md5=98df2e39478332bfd95f1b6e5c35f072CAS | 18597424PubMed |

[38]  J. Y. Huang, W. Y. Xu, H. J. Xie, S. J. Li, J. Org. Chem. 2012, 77, 7506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalurrN&md5=ff4f5439869a0e0234f89a19d0013fe0CAS |