Structural Diversity and Fluorescence Regulation of Three ZnII Coordination Polymers Assembled from Mixed Ligands Tectons
Ling-Yun Xin A , Guang-Zhen Liu A C , Lu-Fang Ma A , Xue Zhang A and Li-Ya Wang A B CA College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, China.
B College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061, China.
C Corresponding authors: Email: gzliuly@126.com; wlya@lynu.edu.cn
Australian Journal of Chemistry 68(5) 758-765 https://doi.org/10.1071/CH14347
Submitted: 30 May 2014 Accepted: 31 July 2014 Published: 6 October 2014
Abstract
By adopting a mixed-ligand strategy, three ZnII coordination polymers were prepared by hydrothermal reactions of zinc(ii) acetate with flexible 1,2-phenylenediacetic acid (H2phda) combining with three nitrogen-rich tectons namely, [Zn2(phda)2(bpo)2]n·2H2O (1), [Zn(phda)(pytz)]n (2), and [Zn(phda)(bib)]n·H2O (3) (where bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, pytz = 3,5-di(4-pyridyl)-1,2,4-triazole, and bib = 1,4-bis(imidazol-1-yl)benzene). The single-crystal X-ray diffraction patterns reveal that the three compounds contain metal(ii)-carboxylate chains further extended by such nitrogen-rich co-ligands to afford a vast diversity of structures from two-dimensional (2D) stepwise grids (1), 2D double layers (2), to three-dimensional (3D)→3D 4-fold interpenetrating diamondoid networks. Furthermore, the structural differences in these complexes are primarily affected by the introduction of N-donor ancillary co-ligands so that their solid-state photoluminescence properties exhibit various emission spectra. Especially, compound 3 shows a guest-sensitive luminescence behaviour, which may be useful in applications as guest sensors.
References
[1] (a) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtr7L&md5=6f196ec2df42b67ed0fd057a9d715fd1CAS | 21916513PubMed |
(b) W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas, C. A. Mirkin, J. Am. Chem. Soc. 2014, 136, 7261.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Chu, Z. Su, J. Fan, T. Okamura, G. C. Lv, G. X. Liu, W. Y. Sun, N. Ueyama, Cryst. Growth Des. 2011, 11, 3885.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. F. Ma, M. L. Han, J. H. Qin, L. Y. Wang, M. Du, Inorg. Chem. 2012, 51, 9431.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. M. Chen, M. L. Tong, Acc. Chem. Res. 2007, 40, 162.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Barman, H. Furukawa, O. Blacque, K. Venkatesan, O. M. Yaghi, G. X. Jin, H. Berke, Chem. Commun. 2011, 47, 11882.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nature 2011, 3, 34.
| 1:CAS:528:DC%2BC3cXhsFKjurfP&md5=b3fbc3635cb5e507b14960f5bcacdedcCAS |
(b) W. G. Lu, L. Jiang, X. L. Feng, T. B. Lu, Inorg. Chem. 2009, 48, 6997.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. L. Zheng, Y. Liu, M. Pan, X. Q. Liu, J. Y. Zhang, C. Y. Zhao, Y. X. Tong, C. Y. Su, Angew. Chem., Int. Ed. 2007, 46, 7399.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Luo, C. B. Fan, M. B. Luo, X. L. Wu, Y. Zhu, S. Z. Pu, W. Y. Xu, G. C. Guo, Angew. Chem., Int. Ed. 2014, 53, 9298.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, S. Gao, Angew. Chem., Int. Ed. 2007, 46, 7388.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) K. Y. Kim, S. Park, S. H. Jung, S. S. Lee, K. M. Park, S. Shinkai, J. H. Jung, Inorg. Chem. 2014, 53, 3004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2jsr0%3D&md5=8d0d29dbf3550508c6260ccd0c35c754CAS | 24559149PubMed |
(b) R. Sarma, D. Kalita, J. B. Baruah, Dalton Trans. 2009, 7428.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. W. Wang, C. C. Ji, J. Li, Z. J. Guo, Y. Z. Li, H. G. Zheng, Cryst. Growth Des. 2009, 9, 475.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro, H. C. Zhou, Chem. Commun. 2005, 5447.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) X. Y. Dong, B. Li, B. B. Ma, S. J. Li, M. M. Dong, Y. Y. Zhu, S. Q. Zang, Y. Song, H. W. Hou, T. C. W. Mak, J. Am. Chem. Soc. 2013, 135, 10214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKit7zN&md5=3ce6b64d1975144f05b3cba03df1561bCAS | 23829317PubMed |
(b) M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, M. Kurmoo, J. Am. Chem. Soc. 2010, 132, 2561.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu, Angew. Chem., Int. Ed. 2004, 43, 5036.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) C. S. Liu, J. J. Wang, L. F. Yan, Z. Chang, X. H. Bu, E. C. Sanudo, J. Ribas, Inorg. Chem. 2007, 46, 6299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1SnsL4%3D&md5=0b4a9421176f30e428152e2c98a9a703CAS | 17608470PubMed |
(b) J. W. Cheng, S. T. Zheng, G. Y. Yang, Dalton Trans. 2007, 4059.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Luo, K. Chen, Q. Liu, Y. Lu, T. Okamura, G. C. Lv, Y. Zhao, W. Y. Sun, Cryst. Growth Des. 2013, 13, 2312.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. F. Zhu, J. Fan, T. Okamura, Z. H. Zhang, G. X. Liu, K. B. Yu, W. Y. Sun, N. Ueyama, Inorg. Chem. 2006, 45, 3941.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) L. Y. Xin, G. Z. Liu, X. L. Li, L. Y. Wang, Cryst. Growth Des. 2012, 12, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaku7fF&md5=2391b1faa231e9c919833dcdc80b824aCAS |
(b) G. Z. Liu, X. D. Li, X. L. Li, L. Y. Wang, CrystEngComm 2013, 15, 2428.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Y. Xin, G. Z. Liu, L. Y. Wang, J. Solid State Chem. 2011, 184, 1387.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=25afc7cb9317f7346f28048acee2d3b8CAS |
(b) H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Y. Wang, L. Wang, Z. M. Wang, S. Gao, J. Am. Chem. Soc. 2006, 128, 674.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. H. Zeng, W. X. Zhang, X. Z. Sun, X. M. Chen, Angew. Chem., Int. Ed. 2005, 44, 3079.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) T. K. Maji, K. Uemura, H. C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem., Int. Ed. 2004, 43, 3269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2gtrw%3D&md5=1c8bbd80f878de092838d9af61acede6CAS |
(b) B. J. Burnett, P. M. Barron, W. Choe, CrystEngComm 2012, 14, 3839.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. P. Huang, J. L. Tian, G. J. Chen, D. D. Li, W. Gu, X. Liu, S. P. Yan, D. Z. Liao, P. Cheng, CrystEngComm 2010, 12, 1269.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Seo, C. Bonneau, R. Matsuda, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2011, 133, 9005.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. H. Zhao, X. Zheng, Y. X. Che, Aust. J. Chem. 2014, 67, 603.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) M. H. Klingele, S. Brooker, Coord. Chem. Rev. 2003, 241, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGku7s%3D&md5=86c7babca7acc828d9236406c859b4e0CAS |
(b) Q. M. Wang, G. C. Guo, T. C. W. Mak, Chem. Commun. 1999, 1849.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. C. Brandys, R. J. Puddephatt, Chem. Commun. 2001, 1508.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. G. Pschirer, D. M. Curtin, M. D. Smith, U. H. F. Bunz, H. C. zurLoye, Angew. Chem., Int. Ed. 2002, 41, 583.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. L. Wei, L. K. Li, L. Y. Fan, C. H. Wang, H. W. Hou, Aust. J. Chem. 2014, 67, 241.
[10] G. M. Sheldrick, A program for the Siemens Area Detector Absorption correction 1997 (University of Göttingen: Germany).
[11] (a) G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures 1997 (University of Göttingen: Germany).
(b) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures 1997 (University of Göttingen: Germany).
[12] (a) J. F. Huang, Y. M. Dai, J. R. Lin, H. Lin, E. Tang, Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, 64, m386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyktbw%3D&md5=ade462d6e1db9b08e844815c58df6dccCAS |
(b) X. J. Li, R. Cao, D. F. Sun, W. H. Bi, Y. Q. Wang, X. Li, M. C. Hong, Cryst. Growth Des. 2004, 4, 775.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. F. Ma, Y. Y. Wang, J. Q. Liu, G. P. Yang, M. Du, L. Y. Wang, CrystEngComm 2009, 11, 1800.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) J. P. Zhang, Y. Y. Lin, X. C. Huang, X. M. Chen, J. Am. Chem. Soc. 2005, 127, 5495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ahsL8%3D&md5=ba009ea7b101ad089a24b5aa88bd56a8CAS | 15826187PubMed |
(b) S. L. Zheng, J. H. Yang, X. L. Yu, X. M. Chen, W. T. Wong, Inorg. Chem. 2004, 43, 830.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Shi, G. S. Zhu, Q. R. Fang, G. Wu, G. Tian, R. W. Wang, D. L. Zhang, M. Xue, S. L. Qiu, Eur. J. Inorg. Chem. 2004, 185.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. P. Li, M. Du, Chem. Commun. 2011, 47, 5958.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar |
[14] E. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005, 127, 6374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVWntrk%3D&md5=b4ee2a679405791fb9fc59c85673fcd2CAS | 15853345PubMed |