Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structural Diversity and Fluorescence Regulation of Three ZnII Coordination Polymers Assembled from Mixed Ligands Tectons

Ling-Yun Xin A , Guang-Zhen Liu A C , Lu-Fang Ma A , Xue Zhang A and Li-Ya Wang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, China.

B College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061, China.

C Corresponding authors: Email: gzliuly@126.com; wlya@lynu.edu.cn

Australian Journal of Chemistry 68(5) 758-765 https://doi.org/10.1071/CH14347
Submitted: 30 May 2014  Accepted: 31 July 2014   Published: 6 October 2014

Abstract

By adopting a mixed-ligand strategy, three ZnII coordination polymers were prepared by hydrothermal reactions of zinc(ii) acetate with flexible 1,2-phenylenediacetic acid (H2phda) combining with three nitrogen-rich tectons namely, [Zn2(phda)2(bpo)2]n·2H2O (1), [Zn(phda)(pytz)]n (2), and [Zn(phda)(bib)]n·H2O (3) (where bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, pytz = 3,5-di(4-pyridyl)-1,2,4-triazole, and bib = 1,4-bis(imidazol-1-yl)benzene). The single-crystal X-ray diffraction patterns reveal that the three compounds contain metal(ii)-carboxylate chains further extended by such nitrogen-rich co-ligands to afford a vast diversity of structures from two-dimensional (2D) stepwise grids (1), 2D double layers (2), to three-dimensional (3D)→3D 4-fold interpenetrating diamondoid networks. Furthermore, the structural differences in these complexes are primarily affected by the introduction of N-donor ancillary co-ligands so that their solid-state photoluminescence properties exhibit various emission spectra. Especially, compound 3 shows a guest-sensitive luminescence behaviour, which may be useful in applications as guest sensors.


References

[1]  (a) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtr7L&md5=6f196ec2df42b67ed0fd057a9d715fd1CAS | 21916513PubMed |
      (b) W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas, C. A. Mirkin, J. Am. Chem. Soc. 2014, 136, 7261.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Chu, Z. Su, J. Fan, T. Okamura, G. C. Lv, G. X. Liu, W. Y. Sun, N. Ueyama, Cryst. Growth Des. 2011, 11, 3885.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. F. Ma, M. L. Han, J. H. Qin, L. Y. Wang, M. Du, Inorg. Chem. 2012, 51, 9431.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. M. Chen, M. L. Tong, Acc. Chem. Res. 2007, 40, 162.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. Barman, H. Furukawa, O. Blacque, K. Venkatesan, O. M. Yaghi, G. X. Jin, H. Berke, Chem. Commun. 2011, 47, 11882.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H. Yamaguchi, Nature 2011, 3, 34.
         | 1:CAS:528:DC%2BC3cXhsFKjurfP&md5=b3fbc3635cb5e507b14960f5bcacdedcCAS |
      (b) W. G. Lu, L. Jiang, X. L. Feng, T. B. Lu, Inorg. Chem. 2009, 48, 6997.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. L. Zheng, Y. Liu, M. Pan, X. Q. Liu, J. Y. Zhang, C. Y. Zhao, Y. X. Tong, C. Y. Su, Angew. Chem., Int. Ed. 2007, 46, 7399.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. Luo, C. B. Fan, M. B. Luo, X. L. Wu, Y. Zhu, S. Z. Pu, W. Y. Xu, G. C. Guo, Angew. Chem., Int. Ed. 2014, 53, 9298.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, S. Gao, Angew. Chem., Int. Ed. 2007, 46, 7388.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) K. Y. Kim, S. Park, S. H. Jung, S. S. Lee, K. M. Park, S. Shinkai, J. H. Jung, Inorg. Chem. 2014, 53, 3004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivF2jsr0%3D&md5=8d0d29dbf3550508c6260ccd0c35c754CAS | 24559149PubMed |
      (b) R. Sarma, D. Kalita, J. B. Baruah, Dalton Trans. 2009, 7428.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. W. Wang, C. C. Ji, J. Li, Z. J. Guo, Y. Z. Li, H. G. Zheng, Cryst. Growth Des. 2009, 9, 475.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro, H. C. Zhou, Chem. Commun. 2005, 5447.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) X. Y. Dong, B. Li, B. B. Ma, S. J. Li, M. M. Dong, Y. Y. Zhu, S. Q. Zang, Y. Song, H. W. Hou, T. C. W. Mak, J. Am. Chem. Soc. 2013, 135, 10214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKit7zN&md5=3ce6b64d1975144f05b3cba03df1561bCAS | 23829317PubMed |
      (b) M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, M. Kurmoo, J. Am. Chem. Soc. 2010, 132, 2561.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown, J. R. Long, Science 2012, 335, 1606.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu, Angew. Chem., Int. Ed. 2004, 43, 5036.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) C. S. Liu, J. J. Wang, L. F. Yan, Z. Chang, X. H. Bu, E. C. Sanudo, J. Ribas, Inorg. Chem. 2007, 46, 6299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1SnsL4%3D&md5=0b4a9421176f30e428152e2c98a9a703CAS | 17608470PubMed |
      (b) J. W. Cheng, S. T. Zheng, G. Y. Yang, Dalton Trans. 2007, 4059.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Luo, K. Chen, Q. Liu, Y. Lu, T. Okamura, G. C. Lv, Y. Zhao, W. Y. Sun, Cryst. Growth Des. 2013, 13, 2312.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. F. Zhu, J. Fan, T. Okamura, Z. H. Zhang, G. X. Liu, K. B. Yu, W. Y. Sun, N. Ueyama, Inorg. Chem. 2006, 45, 3941.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) L. Y. Xin, G. Z. Liu, X. L. Li, L. Y. Wang, Cryst. Growth Des. 2012, 12, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVaku7fF&md5=2391b1faa231e9c919833dcdc80b824aCAS |
      (b) G. Z. Liu, X. D. Li, X. L. Li, L. Y. Wang, CrystEngComm 2013, 15, 2428.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Y. Xin, G. Z. Liu, L. Y. Wang, J. Solid State Chem. 2011, 184, 1387.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=25afc7cb9317f7346f28048acee2d3b8CAS |
      (b) H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Y. Wang, L. Wang, Z. M. Wang, S. Gao, J. Am. Chem. Soc. 2006, 128, 674.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. H. Zeng, W. X. Zhang, X. Z. Sun, X. M. Chen, Angew. Chem., Int. Ed. 2005, 44, 3079.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) T. K. Maji, K. Uemura, H. C. Chang, R. Matsuda, S. Kitagawa, Angew. Chem., Int. Ed. 2004, 43, 3269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2gtrw%3D&md5=1c8bbd80f878de092838d9af61acede6CAS |
      (b) B. J. Burnett, P. M. Barron, W. Choe, CrystEngComm 2012, 14, 3839.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. P. Huang, J. L. Tian, G. J. Chen, D. D. Li, W. Gu, X. Liu, S. P. Yan, D. Z. Liao, P. Cheng, CrystEngComm 2010, 12, 1269.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Seo, C. Bonneau, R. Matsuda, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2011, 133, 9005.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. H. Zhao, X. Zheng, Y. X. Che, Aust. J. Chem. 2014, 67, 603.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. H. Klingele, S. Brooker, Coord. Chem. Rev. 2003, 241, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGku7s%3D&md5=86c7babca7acc828d9236406c859b4e0CAS |
      (b) Q. M. Wang, G. C. Guo, T. C. W. Mak, Chem. Commun. 1999, 1849.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. C. Brandys, R. J. Puddephatt, Chem. Commun. 2001, 1508.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. G. Pschirer, D. M. Curtin, M. D. Smith, U. H. F. Bunz, H. C. zurLoye, Angew. Chem., Int. Ed. 2002, 41, 583.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. L. Wei, L. K. Li, L. Y. Fan, C. H. Wang, H. W. Hou, Aust. J. Chem. 2014, 67, 241.

[10]  G. M. Sheldrick, A program for the Siemens Area Detector Absorption correction 1997 (University of Göttingen: Germany).

[11]     (a) G. M. Sheldrick, SHELXS-97, Program for the Solution of Crystal Structures 1997 (University of Göttingen: Germany).
         (b) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures 1997 (University of Göttingen: Germany).

[12]  (a) J. F. Huang, Y. M. Dai, J. R. Lin, H. Lin, E. Tang, Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, 64, m386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyktbw%3D&md5=ade462d6e1db9b08e844815c58df6dccCAS |
      (b) X. J. Li, R. Cao, D. F. Sun, W. H. Bi, Y. Q. Wang, X. Li, M. C. Hong, Cryst. Growth Des. 2004, 4, 775.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. F. Ma, Y. Y. Wang, J. Q. Liu, G. P. Yang, M. Du, L. Y. Wang, CrystEngComm 2009, 11, 1800.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) J. P. Zhang, Y. Y. Lin, X. C. Huang, X. M. Chen, J. Am. Chem. Soc. 2005, 127, 5495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ahsL8%3D&md5=ba009ea7b101ad089a24b5aa88bd56a8CAS | 15826187PubMed |
      (b) S. L. Zheng, J. H. Yang, X. L. Yu, X. M. Chen, W. T. Wong, Inorg. Chem. 2004, 43, 830.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Shi, G. S. Zhu, Q. R. Fang, G. Wu, G. Tian, R. W. Wang, D. L. Zhang, M. Xue, S. L. Qiu, Eur. J. Inorg. Chem. 2004, 185.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. P. Li, M. Du, Chem. Commun. 2011, 47, 5958.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  E. Y. Lee, S. Y. Jang, M. P. Suh, J. Am. Chem. Soc. 2005, 127, 6374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVWntrk%3D&md5=b4ee2a679405791fb9fc59c85673fcd2CAS | 15853345PubMed |